HOME





Clipping (computer Graphics)
Clipping, in the context of computer graphics, is a method to selectively enable or disable rendering (computer graphics), rendering operations within a defined region of interest. Mathematically, clipping can be described using the terminology of constructive geometry. A rendering algorithm only draws pixels in the intersection between the clip region and the scene model. Lines and surfaces outside the view volume (aka. frustum) are removed. Clip regions are commonly specified to improve render performance. A well-chosen clip allows the renderer to save time and energy by skipping calculations related to pixels that the user cannot see. Pixels that will be drawn are said to be within the clip region. Pixels that will not be drawn are outside the clip region. More informally, pixels that will not be drawn are said to be "clipped." In 2D graphics In two-dimensional graphics, a clip region may be defined so that pixels are only drawn within the boundaries of a window (computing), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Graphics
Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by graphics hardware, computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as Computer-generated imagery, computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of Computer graphics (computer science), computer science research. Some topics in computer graphics include user interface design, Sprite (computer graphics), sprite graphics, raster graphics, Rendering (computer graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Texture Mapping Hardware
Texture mapping is a term used in computer graphics to describe how 2D images are projected onto 3D models. The most common variant is the UV unwrap, which can be described as an inverse paper cutout, where the surfaces of a 3D model are cut apart so that it can be unfolded into a 2D coordinate space (UV Space). Semantic Texture mapping can both refer to the task of unwrapping a 3D model, the abstract that a 3D model has textures applied to it and the related algorithm of the 3D software. Texture map refers to a Raster graphics also called image, texture. If the texture stores a specific property it's also referred to as color map, roughness map, etc. The coordinate space which converts from the 3D space of a 3D model into a 2D space so that it can sample from the Texture map is called: UV Space, UV Coordinates, Texture Space. Algorithm A simplified explanation of how an algorithm could work to render an image: # For each pixel we trace the coordinates of the screen i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greiner–Hormann Clipping Algorithm
The Greiner-Hormann algorithm is used in computer graphics for polygon Clipping (computer graphics), clipping. It performs better than the Vatti clipping algorithm, but cannot handle Degeneracy (mathematics), degeneracies. It can process both self-intersecting and non-convex polygons. It can be trivially generalized to compute other Boolean operations on polygons, such as union and difference. The algorithm is based on the definition of the "inside" of a polygon based on the winding number. It considers regions with odd winding number to be inside the polygon; this is known as the even–odd rule. It takes two lists of polygons as input. In its original form, the algorithm is divided into three phases: * In the first phase, pairwise intersections between edges of the polygons are computed. Additional vertices are inserted into both polygons at the points of intersection; an intersection vertex holds a pointer to its counterpart in the other polygon. * In the second phase, each inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Line Clipping
In computer graphics, line clipping is the process of removing ( clipping) lines or portions of lines outside an area of interest (a viewport or view volume). Typically, any part of a line which is outside of the viewing area is removed. There are two common algorithms for line clipping: Cohen–Sutherland and Liang–Barsky. A line-clipping method consists of various parts. Tests are conducted on a given line segment to find out whether it lies outside the view area or volume. Then, intersection calculations are carried out with one or more clipping boundaries. Determining which portion of the line is inside or outside of the clipping volume is done by processing the endpoints of the line with regards to the intersection. Cohen–Sutherland In computer graphics, the Cohen–Sutherland algorithm (named after Danny Cohen and Ivan Sutherland) is a line-clipping algorithm. The algorithm divides a 2D space into 9 regions, of which only the middle part (viewport) is visible. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Medical Imaging
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organ (anatomy), organs and Tissue (biology), tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging. Measurement and recording techniques that are not primarily designed to produce images, such as electroencephalography (EEG), magnetoencephalography (MEG), electrocardiography (ECG), and others, represent other technologies that produce data susceptible to representation as a parameter graph versus time or maps that contain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field Of View
The field of view (FOV) is the angle, angular extent of the observable world that is visual perception, seen at any given moment. In the case of optical instruments or sensors, it is a solid angle through which a detector is sensitive to electromagnetic radiation. It is further relevant in ''angle of view, photography''. Humans and animals In the context of human and primate vision, the term "field of view" is typically only used in the sense of a restriction to what is visible by external apparatus, like when wearing spectacles or virtual reality goggles. Note that eye movements are allowed in the definition but do not change the field of view when understood this way. If the analogy of the eye's retina working as a sensor is drawn upon, the corresponding concept in human (and much of animal vision) is the visual field. It is defined as "the number of degrees of visual angle during stable fixation of the eyes".Strasburger, Hans; Pöppel, Ernst (2002). Visual Field. In G. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viewing Frustum
In 3D computer graphics, a viewing frustum or view frustum is the region of space in the modeled world that may appear on the screen; it is the field of view of a perspective virtual camera system. The view frustum is typically obtained by taking a geometrical frustum—that is a truncation with parallel planes—of the pyramid of vision, which is the adaptation of (idealized) '' cone of vision'' that a camera or eye would have to the rectangular viewports typically used in computer graphics. Some authors use ''pyramid of vision'' as a synonym for view frustum itself, i.e. consider it truncated. The exact shape of this region varies depending on what kind of camera lens is being simulated, but typically it is a frustum of a rectangular pyramid (hence the name). The planes that cut the frustum perpendicular to the viewing direction are called the ''near plane'' and the ''far plane''. Objects closer to the camera than the near plane or beyond the far plane are not drawn. Somet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Viewport
A viewport is a polygon viewing region in computer graphics. In computer graphics theory, there are two region-like notions of relevance when rendering some objects to an image. In textbook terminology, the ''world coordinate window'' is the area of interest (meaning what the user wants to visualize) in some application-specific coordinates, e.g. miles, centimeters etc. The word ''window'' as used here should not be confused with the Window (computing), GUI window, i.e. the notion used in window managers. Rather it is an analogy with how a window limits what one can see outside a room. In contrast, the ''viewport'' is an area (typically rectangular) expressed in rendering-device-specific coordinates, e.g. pixels for screen coordinates, in which the objects of interest are going to be rendered. Clipping (computer graphics), Clipping to the world-coordinates window is usually applied to the objects before they are passed through the Coordinate system#Transformations , window-to-vi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]