HOME
*





Clean Ring
In mathematics, a clean ring is a ring in which every element can be written as the sum of a unit and an idempotent. A ring is a local ring if and only if it is clean and has no idempotents other than 0 and 1. The endomorphism ring of a continuous module is a clean ring. Every clean ring is an exchange ring. A matrix ring In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication . The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'')Lang, ''U ... over a clean ring is itself clean. References Ring theory {{abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the resu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unit (ring Theory)
In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the element is unique for this property and is called the multiplicative inverse of . The set of units of forms a group under multiplication, called the group of units or unit group of . Other notations for the unit group are , , and (from the German term ). Less commonly, the term ''unit'' is sometimes used to refer to the element of the ring, in expressions like ''ring with a unit'' or ''unit ring'', and also unit matrix. Because of this ambiguity, is more commonly called the "unity" or the "identity" of the ring, and the phrases "ring with unity" or a "ring with identity" may be used to emphasize that one is considering a ring instead of a rng. Examples The multiplicative identity and its additive inverse are always units. More generally, any root o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Idempotent Element (ring Theory)
In ring theory, a branch of abstract algebra, an idempotent element or simply idempotent of a ring is an element ''a'' such that . That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that for any positive integer ''n''. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring. In Boolean algebra, the main objects of study are rings in which all elements are idempotent under both addition and multiplication. Examples Quotients of Z One may consider the ring of integers modulo ''n'' where ''n'' is squarefree. By the Chinese remainder theorem, this ring factors into the product of rings of integers modulo ''p'' where ''p'' is prime. Now each of these factors is a field, so it is clear that the factors' only idempotents will be 0 a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Ring
In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non-units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x'' is any eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Endomorphism Ring
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map 0: x \mapsto 0 as additive identity and the identity map 1: x \mapsto x as multiplicative identity. The functions involved are restricted to what is defined as a homomorphism in the context, which depends upon the category of the object under consideration. The endomorphism ring consequently encodes several internal properties of the object. As the resulting object is often an algebra over some ring ''R,'' this may also be called the endomorphism algebra. An abelian group is the same thing as a module over the ring of integers, which is the initial object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous Module
In mathematics, a continuous module is a module ''M'' such that every submodule of ''M'' is essential in a direct summand and every submodule of ''M'' isomorphic to a direct summand is itself a direct summand. The endomorphism ring In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in a p ... of a continuous module is a clean ring. References Module theory {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exchange Ring
Exchange may refer to: Physics *Gas exchange is the movement of oxygen and carbon dioxide molecules from a region of higher concentration to a region of lower concentration. Places United States * Exchange, Indiana, an unincorporated community * Exchange, Missouri, an unincorporated community * Exchange, Pennsylvania, an unincorporated community * Exchange, West Virginia, an unincorporated community Elsewhere * Exchange Alley, in London, United Kingdom * Exchange District, a historic area in Winnipeg, Manitoba, Canada Business and economy *''Bureau de change'', a business whose customers exchange one currency for another *Cryptocurrency exchange, a business that allows customers to trade cryptocurrencies or digital currencies. *Digital currency exchangers (a.k.a. DCEs or Bitcoin exchanges), businesses that allow customers to trade digital currencies for other assets, such as conventional fiat money, or different digital currencies *Exchange (economics) *Exchange (organized market ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Ring
In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication . The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'')Lang, ''Undergraduate algebra'', Springer, 2005; V.§3. (alternative notations: Mat''n''(''R'') and ). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When ''R'' is a commutative ring, the matrix ring M''n''(''R'') is an associative algebra over ''R'', and may be called a matrix algebra. In this setting, if ''M'' is a matrix and ''r'' is in ''R'', then the matrix ''rM'' is the matrix ''M'' with each of its entries multiplied by ''r''. Examples * The set of all matrices over ''R'', denoted M''n''(''R''). This is sometimes called the "full ring of ''n''-by-''n'' matrices". * The set of all upper triangular matrices over ''R''. * The set of all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]