Central Charge
In theoretical physics, a central charge is an operator ''Z'' that commutes with all the other symmetry operators. The adjective "central" refers to the center of the symmetry group—the subgroup of elements that commute with all other elements of the original group—often embedded within a Lie algebra. In some cases, such as two-dimensional conformal field theory, a central charge may also commute with all of the other operators, including operators that are not symmetry generators. Overview More precisely, the central charge is the charge that corresponds, by Noether's theorem, to the center of the central extension of the symmetry group. In theories with supersymmetry, this definition can be generalized to include supergroups and Lie superalgebras. A central charge is any operator which commutes with all the other supersymmetry generators. Theories with extended supersymmetry typically have many operators of this kind. In string theory, in the first quantized formali ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert E ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Quantum Number
In physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations. The specific "topological considerations" are usually due to the appearance of the fundamental group or a higher-dimensional homotopy group in the description of the problem, quite often because the boundary, on which the boundary conditions are specified, has a non-trivial homotopy group that is preserved by the differential equations. The topological quantum number of a solution is sometimes called the winding number of the solution, or, more precisely, it is the degree of a continuous mapping. The concept of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two-dimensional Conformal Field Theory
A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models. Basic structures Geometry Two-dimensional conformal field theories (CFTs) are defined on Riemann surfaces, where local conformal maps are holomorphic functions. While a CFT might conceivably exist only on a given Riemann surface, its existence on any surface other than the sphere implies its existence on all surfaces. Given a CFT, it is indeed possible to glue two Riemann surfaces where it exists, and obtai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conformal Anomaly
A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory. In quantum field theory when we set Planck constant \hbar to zero we have only Feynman tree diagrams, which is a "classical" theory (equivalent to the Fredholm theory of a classical field theory). One-loop (''N''-loop) Feynman diagrams are proportional to \hbar (\hbar^N). If a current is conserved classically (\hbar=0) but develops a divergence at loop level in quantum field theory (\propto \hbar), we say there is an anomaly. A famous example is the axial current anomaly where massless fermions will have a classically conserved axial current, but which develops a nonzero divergence in the presence of gauge fields. A scale invariant theory, one in which there are no mass scales, will have a conserved Noether current called the "scale current." This is derived by performing scale transformations on the coordina ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charge (physics)
In physics, a charge is any of many different quantities, such as the electric charge in electromagnetism or the color charge in quantum chromodynamics. Charges correspond to the time-invariant generators of a symmetry group, and specifically, to the generators that commute with the Hamiltonian. Charges are often denoted by Q, and so the invariance of the charge corresponds to the vanishing commutator ,H0, where H is the Hamiltonian. Thus, charges are associated with conserved quantum numbers; these are the eigenvalues of the generator Q. A "charge" can also refer to a point-shaped object with an electric charge and a position, such as in the method of image charges. Abstract definition Abstractly, a charge is any generator of a continuous symmetry of the physical system under study. When a physical system has a symmetry of some sort, Noether's theorem implies the existence of a conserved current. The thing that "flows" in the current is the "charge"; the charge is the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Quantum Field Theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory that computes topological invariants. While TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in: * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anyon
In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional physical system, systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical properties intermediate between fermions and bosons. In general, the operation of exchange symmetry, exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as ''abelian'' or ''non-abelian''. Abelian anyons, detected by two experiments in 2020, play a major role in the fractional quantum Hall effect. Introduction The statistical mechanics of large many-body systems obeys laws described by Maxwell–Boltzmann statistics. Quantum statistics is more complicated because of the different behaviors of two different kinds of particles called fermions and bosons. In two-dimensional systems, however, there is a third type of particle, called an anyon. In a two-dimens ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss Sum
In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically :G(\chi) := G(\chi, \psi)= \sum \chi(r)\cdot \psi(r) where the sum is over elements of some finite commutative ring , is a group homomorphism of the additive group into the unit circle, and is a group homomorphism of the unit group into the unit circle, extended to non-unit , where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function. Such sums are ubiquitous in number theory. They occur, for example, in the functional equations of Dirichlet -functions, where for a Dirichlet character the equation relating and ) (where is the complex conjugate of ) involves a factor :\frac. History The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for the field of residues modulo a prime number , and the Legendre symbol. In this case Gauss proved that or for congruent to 1 or 3 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modular Category
Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computer science and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modular function deployment, a method in systems engineering and product development * Module, a measure of a gear's pitch * Ontology modularization, a methodological principle in ontology engineering Computer software * Modular programming, a software design technique * Loadable kernel module, an object file that contains code to extend the running kernel * Environment Modules, a software tool designed to help users manage their Unix or Linux shell environment * Modula-2 or Modula-3, programming languages which stress the use of modules Computer hardware * Computer module, an early packaging technique that combined several electronic components to produce a single logic element * Memory module, a physical "stick" of RAM, an essential ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Virasoro Algebra
In mathematics, the Virasoro algebra is a complex Lie algebra and the unique nontrivial central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory. It is named after Miguel Ángel Virasoro. Structure The Virasoro algebra is spanned by generators for and the central charge . These generators satisfy ,L_n0 and The factor of \frac is merely a matter of convention. For a derivation of the algebra as the unique central extension of the Witt algebra, see derivation of the Virasoro algebra or Schottenloher, Thm. 5.1, pp. 79. The Virasoro algebra has a presentation in terms of two generators (e.g. 3 and −2) and six relations. The generators L_ are called annihilation modes, while L_ are creation modes. A basis of creation generators of the Virasoro algebra's universal enveloping algebra is the set : \mathcal = \Big\_ For L\in \mathcal, let , L, = \sum_^k n_i, then _0,L= , L, L. Representation theory In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stress–energy Tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity. Definition The stress–energy tensor involves the use of superscripted variables ( exponents; see ''Tensor index notation'' and '' Einstein summation notation''). If Cartesian coordinates in SI units are used, then the components of the position four-vector are given by: . In traditional Cartesian coordinates these are instead customarily written , where is coordinate time, and , , and are coordinate distances. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |