Binomial Coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the term in the polynomial expansion of the binomial power ; this coefficient can be computed by the multiplicative formula :\binom nk = \frac, which using factorial notation can be compactly expressed as :\binom = \frac. For example, the fourth power of is :\begin (1 + x)^4 &= \tbinom x^0 + \tbinom x^1 + \tbinom x^2 + \tbinom x^3 + \tbinom x^4 \\ &= 1 + 4x + 6 x^2 + 4x^3 + x^4, \end and the binomial coefficient \tbinom =\tfrac = \tfrac = 6 is the coefficient of the term. Arranging the numbers \tbinom, \tbinom, \ldots, \tbinom in successive rows for n=0,1,2,\ldots gives a triangular array called Pascal's triangle, satisfying the recurrence relation :\binom = \binom + \binom. The binomial coefficients occur in many areas of mathematics, a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Pascal's Triangle 5
Pascal, Pascal's or PASCAL may refer to: People and fictional characters * Pascal (given name), including a list of people with the name * Pascal (surname), including a list of people and fictional characters with the name ** Blaise Pascal, French mathematician, physicist, inventor, philosopher, writer and theologian Places * Pascal (crater), a lunar crater * Pascal Island (Antarctica) * Pascal Island (Western Australia) Science and technology * Pascal (unit), the SI unit of pressure * Pascal (programming language), a programming language developed by Niklaus Wirth * PASCAL (database), a bibliographic database maintained by the Institute of Scientific and Technical Information * Pascal (microarchitecture), codename for a microarchitecture developed by Nvidia Other uses * (1895–1911) * (1931–1942) * Pascal and Maximus, fictional characters in ''Tangled'' * Pascal blanc, a French white wine grape * Pascal College, secondary education school in Zaandam, the Netherlands * Pas ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

AlKaraji
( fa, ابو بکر محمد بن الحسن الکرجی; c. 953 – c. 1029) was a 10thcentury Persian mathematician and engineer who flourished at Baghdad. He was born in Karaj, a city near Tehran. His three principal surviving works are mathematical: ''AlBadi' fi'lhisab'' (''Wonderful on calculation''), ''AlFakhri fi'ljabr wa'lmuqabala'' (''Glorious on algebra''), and ''AlKafi fi'lhisab'' (''Sufficient on calculation''). Work AlKaraji wrote on mathematics and engineering. Some consider him to be merely reworking the ideas of others (he was influenced by Diophantus) but most regard him as more original, in particular for the beginnings of freeing algebra from geometry. Among historians, his most widely studied work is his algebra book ''alfakhri fi aljabr wa almuqabala'', which survives from the medieval era in at least four copies. In his book "Extraction of hidden waters" he has mentioned that earth is spherical in shape but considers it the centre of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Two Real Or Complex Valued Arguments
2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures. Evolution Arabic digit The digit used in the modern Western world to represent the number 2 traces its roots back to the Indic Brahmic script, where "2" was written as two horizontal lines. The modern Chinese and Japanese languages (and Korean Hanja) still use this method. The Gupta script rotated the two lines 45 degrees, making them diagonal. The top line was sometimes also shortened and had its bottom end curve towards the center of the bottom line. In the Nagari script, the top line was written more like a curve connecting to the bottom line. In the Arabic Ghubar writing, the bottom line was completely vertical, and the digit looked like a dotless closing question mark. Restoring the bottom line to its original horizo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Pochhammer Symbol
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial :\begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(xk+1) = \prod_^(xk) \,. \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, (A reprint of the 1950 edition by Chelsea Publishing Co.) rising sequential product, or upper factorial) is defined as :\begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k1) = \prod_^(x+k) \,. \end The value of each is taken to be 1 (an empty product) when . These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation , where is a nonnegative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used with yet another meaning, namely t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Falling Factorial Power
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial :\begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(xk+1) = \prod_^(xk) \,. \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, (A reprint of the 1950 edition by Chelsea Publishing Co.) rising sequential product, or upper factorial) is defined as :\begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k1) = \prod_^(x+k) \,. \end The value of each is taken to be 1 (an empty product) when . These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation , where is a nonnegative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used with yet another meaning, namely t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Recursion
Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references ("crock recursion") can occur. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ''ancestor''. One's anc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Binomial Formula
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the exponents and are nonnegative integers with , and the coefficient of each term is a specific positive integer depending on and . For example, for , (x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. The coefficient in the term of is known as the binomial coefficient \tbinom or \tbinom (the two have the same value). These coefficients for varying and can be arranged to form Pascal's triangle. These numbers also occur in combinatorics, where \tbinom gives the number of different combinations of elements that can be chosen from an element set. Therefore \tbinom is often pronounced as " choose ". History Special cases of the binomial theorem were known since at least the 4th century BC when Greek mathematician Euclid mentioned ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, x^2yz^3=xxyzzz is a monomial. The constant 1 is a monomial, being equal to the empty product and to x^0 for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power x^n of x, with n a positive integer. If several variables are considered, say, x, y, z, then each can be given an exponent, so that any monomial is of the form x^a y^b z^c with a,b,c nonnegative integers (taking note that any exponent 0 makes the corresponding factor equal to 1). # A monomial is a monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A monomial in the first sense is a spec ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal numbers'', and numbers used for ordering are called '' ordinal numbers''. Natural numbers are sometimes used as labels, known as '' nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 800002, begin the natural numbers with , corresponding to the nonnegative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by suc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this threeelement set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Combination
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a ''k''combination of a set ''S'' is a subset of ''k'' distinct elements of ''S''. So, two combinations are identical if and only if each combination has the same members. (The arrangement of the members in each set does not matter.) If the set has ''n'' elements, the number of ''k''combinations, denoted as C^n_k, is equal to the binomial coefficient \binom nk = \frac, which can be written using factorials as \textstyle\frac whenever k\leq n, and which is zero when k>n. This formula can be derived from the fact that each ''k''combination of a set ''S'' of ''n'' members has k! permutations so P^n ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 