HOME





Butterfly Graph
In the mathematics, mathematical field of graph theory, the butterfly graph (also called the bowtie graph and the hourglass graph) is a planar graph, planar, undirected graph with 5 Vertex (graph theory), vertices and 6 edges. It can be constructed by joining 2 copies of the cycle graph with a common vertex and is therefore Graph isomorphism, isomorphic to the friendship graph . The butterfly graph has graph diameter, diameter 2 and girth (graph theory), girth 3, radius 1, chromatic number 3, chromatic index 4 and is both Eulerian graph, Eulerian and a penny graph (this implies that it is unit distance graph, unit distance and planar graph, planar). It is also a 1-k-vertex-connected graph, vertex-connected graph and a 2-k-edge-connected graph, edge-connected graph. There are only three Graceful labeling, non-graceful simple graphs with five vertices. One of them is the butterfly graph. The two others are cycle graph and the complete graph . Bowtie-free grap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Chromatic Number
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an '' edge coloring'' assigns a color to each edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any basis (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the correspondi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Square (geometry)
In geometry, a square is a regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal sides. As with all rectangles, a square's angles are right angles (90 degrees, or /2 radians), making adjacent sides perpendicular. The area of a square is the side length multiplied by itself, and so in algebra, multiplying a number by itself is called squaring. Equal squares can tile the plane edge-to-edge in the square tiling. Square tilings are ubiquitous in tiled floors and walls, graph paper, image pixels, and game boards. Square shapes are also often seen in building floor plans, origami paper, food servings, in graphic design and heraldry, and in instant photos and fine art. The formula for the area of a square forms the basis of the calculation of area and motivates the search for methods for squaring the circle by compass and straightedge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Dihedral Group
In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, or refers to the symmetries of the n-gon, -gon, a group of order . In abstract algebra, refers to this same dihedral group. This article uses the geometric convention, . Definition The word "dihedral" comes from "di-" and "-hedron". The latter comes from the Greek word hédra, which means "face of a geometrical solid". Overall it thus refers to the two faces of a polygon. Elements A regular polygon with n sides has 2n different symmetries: n rotational symmetry, rotational symmetries and n reflection symmetry, reflection symmetries. Usually, we take n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Ken-ichi Kawarabayashi
Ken-ichi Kawarabayashi (, born 1975) is a Japanese graph theorist who works as a professor at the National Institute of Informatics and is known for his research on graph theory (particularly the theory of graph minors) and graph algorithms. Kawarabayashi was born on May 22, 1975, in Tokyo. He earned a bachelor's degree in mathematics from Keio University in 1998, a master's degree from Keio in 2000, and a PhD from Keio in 2001, researching the Lovász–Woodall conjecture under the supervision of Katsuhiro Ota. After temporary positions at Vanderbilt University and under the supervision of Paul Seymour at Princeton University, he became an assistant professor at Tohoku University in 2003, and moved to the National Institute of Informatics in 2006.. In 2003, Kawarabayashi was one of three winners of the Kirkman Medal of the Institute of Combinatorics and its Applications, an award given by them annually to researchers within four years of their PhD. In 2015, he won the Spring Pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Edge Contraction
In graph theory, an edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices that it previously joined. Edge contraction is a fundamental operation in the theory of graph minors. Vertex identification is a less restrictive form of this operation. Definition The edge contraction operation occurs relative to a particular edge, e. The edge e is removed and its two incident vertices, u and v, are merged into a new vertex w, where the edges incident to w each correspond to an edge incident to either u or v. More generally, the operation may be performed on a set of edges by contracting each edge (in any order). The resulting graph is sometimes written as G/e. (Contrast this with G \setminus e, which means simply removing the edge e without merging its incident vertices.) As defined below, an edge contraction operation may result in a graph with multiple edges even if the original graph was a simple graph. However, some a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Triangle-free Graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. By Turán's theorem, the ''n''-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible. Triangle finding problem The triangle finding or triangle detection problem is the problem of determining whether a graph is triangle-free or not. When the graph does contain a triangle, algorithms are often required to output three vertices which form a triangle in the graph. It is possible to test whether a graph with m edges is triangle-free in time \tilde O\bigl(m^\bigr) where the \tilde O hides sub-polynomial factors. Here \omega is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Induced Subgraph
In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subseteq V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. * Induced paths are induced subgraphs that are paths. The shortest path between any two vertices in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Complete Graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, had already appeared in the 13th century, in the work of Ramon Llull. Such a drawing is sometimes referred to as a mystic rose. Properties The complete graph on vertices is denoted by . Some sources claim that the letter in this notation stands for the German word , but the German name for a complete graph, , does not contain the letter , and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory. has edg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

K-edge-connected Graph
In graph theory, a connected graph is -edge-connected if it remains connected whenever fewer than edges are removed. The edge-connectivity of a graph is the largest for which the graph is -edge-connected. Edge connectivity and the enumeration of -edge-connected graphs was studied by Camille Jordan in 1869. Formal definition Let G = (V, E) be an arbitrary graph. If the subgraph G' = (V, E \setminus X) is connected for all X \subseteq E where , X, < k, then ''G'' is said to be ''k''-edge-connected. The edge connectivity of G is the maximum value ''k'' such that ''G'' is ''k''-edge-connected. The smallest set ''X'' whose removal disconnects ''G'' is a minimum cut in ''G''. The edge connectivity version of Menger's theorem provides an alternative and equivalent character ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

K-vertex-connected Graph
In graph theory, a connected Graph (discrete mathematics), graph is said to be -vertex-connected (or -connected) if it has more than Vertex (graph theory), vertices and remains Connectivity (graph theory), connected whenever fewer than vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest for which the graph is -vertex-connected. Definitions A graph (other than a complete graph) has connectivity ''k'' if ''k'' is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them. In complete graphs, there is no subset whose removal would disconnect the graph. Some sources modify the definition of connectivity to handle this case, by defining it as the size of the smallest subset of vertices whose deletion results in either a disconnected graph or a single vertex. For this variation, the connectivity of a complete graph K_n is n-1. An equivalent definition is that a graph with at least two vertic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]