Balanced Hypergraph
In graph theory, a balanced hypergraph is a hypergraph that has several properties analogous to that of a bipartite graph. Balanced hypergraphs were introduced by Berge as a natural generalization of bipartite graphs. He provided two equivalent definitions. Definition by 2-colorability A hypergraph ''H'' = (''V'', ''E'') is called 2-colorable if its vertices can be 2-colored so that no hyperedge is monochromatic. Every bipartite graph ''G'' = (''X''+''Y'', ''E'') is 2-colorable: each edge contains exactly one vertex of ''X'' and one vertex of ''Y'', so e.g. ''X'' can be colored blue and ''Y'' can be colored yellow and no edge is monochromatic. A hypergraph in which some hyperedges are singletons (contain only one vertex) is obviously not 2-colorable; to avoid such trivial obstacles to 2-colorability, it is common to consider hypergraphs that are essentially 2-colorable, i.e., they become 2-colorable upon deleting all their singleton hyperedges. A hypergraph is called balanced ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Balanced Hypergraph, First Definition
In telecommunications and professional audio, a balanced line or balanced signal pair is an electrical circuit consisting of two Electrical conductor, conductors of the same type, both of which have equal electrical impedance, impedances along their lengths, to ground (electricity), ground, and to other circuits. The primary advantage of the balanced line format is good rejection of Common-mode signal, common-mode noise and Interference (communication), interference when fed to a Differential signalling, differential device such as a transformer or differential amplifier.G. Ballou, ''Handbook for Sound Engineers'', Fifth Edition, Taylor & Francis, 2015, p. 1267–1268. As prevalent in sound recording and reproduction, balanced lines are referred to as balanced audio. A common form of balanced line is twin-lead, used for radio frequency communications. Also common is twisted pair, used for traditional telephone, professional audio, or for data communications. They are to be con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hypergraph
In mathematics, a hypergraph is a generalization of a Graph (discrete mathematics), graph in which an graph theory, edge can join any number of vertex (graph theory), vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a directed hypergraph is a pair (X,E), where X is a set of elements called ''nodes'', ''vertices'', ''points'', or ''elements'' and E is a set of pairs of subsets of X. Each of these pairs (D,C)\in E is called an ''edge'' or ''hyperedge''; the vertex subset D is known as its ''tail'' or ''domain'', and C as its ''head'' or ''codomain''. The order of a hypergraph (X,E) is the number of vertices in X. The size of the hypergraph is the number of edges in E. The order of an edge e=(D,C) in a directed hypergraph is , e, = (, D, ,, C, ): that is, the number of vertices in its tail followed by the number of vertices in its head. The definition above generalizes from a directed graph to a directed hypergraph by defining the h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Bipartite Graph
In the mathematics, mathematical field of graph theory, a bipartite graph (or bigraph) is a Graph (discrete mathematics), graph whose vertex (graph theory), vertices can be divided into two disjoint sets, disjoint and Independent set (graph theory), independent sets U and V, that is, every edge (graph theory), edge connects a Vertex (graph theory), vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycle (graph theory), cycles. The two sets U and V may be thought of as a graph coloring, coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a Gallery of named graphs, triangle: after one node is colored blue and another red, the third vertex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Claude Berge
Claude Jacques Berge (5 June 1926 – 30 June 2002) was a French mathematician, recognized as one of the modern founders of combinatorics and graph theory. Biography and professional history Claude Berge's parents were André Berge and Geneviève Fourcade. André Berge (1902–1995) was a physician and psychoanalyst who, in addition to his professional work, had published several novels. He was the son of René Berge, a mining engineer, and Antoinette Faure. Félix François Faure (1841–1899) was Antoinette Faure's father; he was President of France from 1895 to 1899. André Berge married Geneviève in 1924, and Claude was the second of their six children. His five siblings were Nicole (the eldest), Antoine, Philippe, Edith, and Patrick. Claude attended the near Verneuil-sur-Avre, about west of Paris. This famous private school, founded by the sociologist Edmond Demolins in 1899, attracted students from all over France to its innovative educational program. At this stage in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Vertex Cover In Hypergraphs
In graph theory, a vertex cover in a hypergraph is a set of vertices, such that every hyperedge of the hypergraph contains at least one vertex of that set. It is an extension of the notion of vertex cover in a graph. An equivalent term is a hitting set: given a collection of sets, a set which intersects all sets in the collection in at least one element is called a hitting set. The equivalence can be seen by mapping the sets in the collection onto hyperedges. Another equivalent term, used more in a combinatorial context, is '' transversal''. However, some definitions of transversal require that every hyperedge of the hypergraph contains precisely one vertex from the set. Definition Recall that a hypergraph is a pair , where is a set of ''vertices'' and is a set of subsets of called ''hyperedges''. Each hyperedge may contain one or more vertices. A vertex-cover (aka hitting set or transversal) in is set such that, for all hyperedges , it holds that . The vertex-cove ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Matching In Hypergraphs
In graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph. Definition Recall that a hypergraph is a pair , where is a set of vertices and is a set of subsets of called ''hyperedges''. Each hyperedge may contain one or more vertices. A matching in is a subset of , such that every two hyperedges and in have an empty intersection (have no vertex in common). The matching number of a hypergraph is the largest size of a matching in . It is often denoted by . As an example, let be the set Consider a 3-uniform hypergraph on (a hypergraph in which each hyperedge contains exactly 3 vertices). Let be a 3-uniform hypergraph with 4 hyperedges: : Then admits several matchings of size 2, for example: : : However, in any subset of 3 hyperedges, at least two of them intersect, so there is no matching of size 3. Hence, the matching number of is 2. Interse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Kőnig's Theorem (graph Theory)
In the mathematics, mathematical area of graph theory, Kőnig's theorem, proved by , describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs. Setting A vertex cover in a graph is a set of vertices that includes at least one endpoint of every edge, and a vertex cover is ''minimum'' if no other vertex cover has fewer vertices. A matching (graph theory), matching in a graph is a set of edges no two of which share an endpoint, and a matching is ''maximum'' if no other matching has more edges. It is obvious from the definition that any vertex-cover set must be at least as large as any matching set (since for every edge in the matching, at least one vertex is needed in the cover). In particular, the minimum vertex cover set is at least as large as the maximum matching set. Kőnig's theorem states that, in any bip ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Degree (graph Theory)
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex v is denoted \deg(v) or \deg v. The maximum degree of a graph G is denoted by \Delta(G), and is the maximum of G's vertices' degrees. The minimum degree of a graph is denoted by \delta(G), and is the minimum of G's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, every vertex has the same degree, and so we can speak of ''the'' degree of the graph. A complete graph (denoted K_n, where n is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, n-1. In a signed graph, the number of positive edges connected to the vertex v is called positive deg(v) and the number of connected negative edges is enti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Edge Coloring
In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most different colors, for a given value of , or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three. By Vizing's theorem, the number of colors needed to edge color a simple graph is either its maximum degree or . For some graphs, such as bipartite graphs and high-degree planar graphs, the nu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hall's Marriage Theorem
In mathematics, Hall's marriage theorem, proved by , is a theorem with two equivalent formulations. In each case, the theorem gives a necessity and sufficiency, necessary and sufficient condition for an object to exist: * The Combinatorics, combinatorial formulation answers whether a Finite set, finite collection of Set (mathematics), sets has a transversal (combinatorics), transversal—that is, whether an element can be chosen from each set without repetition. Hall's condition is that for any group of sets from the collection, the total unique elements they contain is at least as large as the number of sets in the group. * The Graph theory, graph theoretic formulation answers whether a finite bipartite graph has a perfect matching—that is, a way to match each vertex from one group uniquely to an adjacent vertex from the other group. Hall's condition is that any subset of vertices from one group has a neighbourhood (graph theory), neighbourhood of equal or greater size. Combinat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hall-type Theorems For Hypergraphs
In the mathematical field of graph theory, Hall-type theorems for hypergraphs are several generalizations of Hall's marriage theorem from graphs to hypergraphs. Such theorems were proved by Ofra Kessler, Ron Aharoni, Penny Haxell, Roy Meshulam, and others. Preliminaries Hall's marriage theorem provides a condition guaranteeing that a bipartite graph admits a perfect matching, or - more generally - a matching that saturates all vertices of . The condition involves the number of neighbors of subsets of . Generalizing Hall's theorem to hypergraphs requires a generalization of the concepts of bipartiteness, perfect matching, and neighbors. 1. Bipartiteness: The notion of a bipartiteness can be extended to hypergraphs in many ways (see bipartite hypergraph). Here we define a hypergraph as bipartite if it is ''exactly 2- colorable'', i.e., its vertices can be 2-colored such that each hyperedge contains exactly one yellow vertex. In other words, can be partitioned into two sets ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |