Abelian Lie Group
In geometry, an abelian Lie group is a Lie group that is an abelian group. A connected abelian real Lie group is isomorphic to \mathbb^k \times (S^1)^h. In particular, a connected abelian (real) compact Lie group is a torus; i.e., a Lie group isomorphic to (S^1)^h. A connected complex Lie group that is a compact group is abelian and a connected compact complex Lie group is a complex torus; i.e., a quotient of \mathbb^n by a lattice. Let ''A'' be a compact abelian Lie group with the identity component A_0. If A/A_0 is a cyclic group, then A is topologically cyclic; i.e., has an element that generates a dense subgroup. (In particular, a torus is topologically cyclic.) See also * Cartan subgroup In algebraic geometry, a Cartan subgroup of a connected linear algebraic group over an algebraically closed field is the centralizer of a maximal torus (which turns out to be connected). Cartan subgroups are nilpotent and are all conjugate. Examp ... Citations Works cited * * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Lie Group
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory. In the following we will assume all groups are Hausdorff spaces. Compact Lie groups Lie groups form a class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include * the circle group T and the torus groups T''n'', * the orthogonal group O(''n''), the special orthogonal group SO(''n'') and its covering spin group Spin(''n''), * the unitary group U(''n'') and the special unitary group SU(''n''), * the compact forms of the exceptional Lie grou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a '' toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a ''solid torus'', which is form ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Lie Group
In geometry, a complex Lie group is a Lie group over the complex numbers; i.e., it is a complex-analytic manifold that is also a group in such a way G \times G \to G, (x, y) \mapsto x y^ is holomorphic. Basic examples are \operatorname_n(\mathbb), the general linear groups over the complex numbers. A connected compact complex Lie group is precisely a complex torus (not to be confused with the complex Lie group \mathbb C^*). Any finite group may be given the structure of a complex Lie group. A complex semisimple Lie group is a linear algebraic group. The Lie algebra of a complex Lie group is a complex Lie algebra. Examples *A finite-dimensional vector space over the complex numbers (in particular, complex Lie algebra) is a complex Lie group in an obvious way. *A connected compact complex Lie group ''A'' of dimension ''g'' is of the form \mathbb^g/L where ''L'' is a discrete subgroup. Indeed, its Lie algebra \mathfrak can be shown to be abelian and then \operatorname: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Torus
In mathematics, a complex torus is a particular kind of complex manifold ''M'' whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number ''N'' circles). Here ''N'' must be the even number 2''n'', where ''n'' is the complex dimension of ''M''. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to C''n'' considered as real vector space; then the quotient group V/\Lambda is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way. For ''n'' = 1 this is the classical period lattice construction of elliptic curves. For ''n'' > 1 Bernhard Riemann found necessary and sufficient conditions for a complex torus to be an algebraic variety; those that are varieties can be embedded into complex projective space, and are the abelian varieties. The actual projective embeddings are complicated (see equations defining abelian varieties) when ''n'' > 1, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a '' generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian gr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartan Subgroup
In algebraic geometry, a Cartan subgroup of a connected linear algebraic group over an algebraically closed field is the centralizer of a maximal torus (which turns out to be connected). Cartan subgroups are nilpotent and are all conjugate. Examples * For a finite field ''F'', the group of diagonal matrices \begin a & 0 \\ 0 & b \end where ''a'' and ''b'' are elements of ''F*''. This is called the split Cartan subgroup of GL2(''F''). * For a finite field ''F'', every maximal commutative semisimple subgroup of GL2(''F'') is a Cartan subgroup (and conversely). See also * Borel subgroup References * * * * {{algebra-stub Algebraic geometry Linear algebraic groups ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Group Theory
Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a group where the commutator subgroup is abelian * Abelianisation Topology and number theory * Abelian variety, a complex torus that can be embedded into projective space * Abelian surface, a two-dimensional abelian variety * Abelian function, a meromorphic function on an abelian variety * Abelian integral, a function related to the indefinite integral of a differential of the first kind Other mathematics * Abelian category, in category theory, a preabelian category in which every monomorphism is a kernel and every epimorphism is a cokernel * Abelian and Tauberian theorems, in real analysis, used in the summation of divergent series * Abelian extension, in Galois theory, a field extension for which the associated Galois group is abelian * Ab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a '' geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |