Zariski Topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space. The Zariski topology allows tools from topology to be used to study algebraic varieties, even when the underlying field is not a topological field. This is one of the basic ideas of scheme theory, which allows one to build general algebraic varieties by gluing together affine varieties in a way similar to that in manifold theory, where manifolds are built by gluing together charts, which are open subsets of real affine spaces. The Zariski topology of an algebraic variety is the topology whose closed sets are the algebraic subsets ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Quintic Polynomial
In algebra, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other words, a quintic function is defined by a polynomial of degree five. Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function. Setting and assuming produces a quintic equation of the form: :ax^5+bx^4+cx^3+dx^2+ex+f=0.\, Solving quintic equations in terms of radicals (''n''th roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem. Finding roots of a quintic ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Affine Varieties
In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zerolocus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasiaffine variety. Some texts do not require a prime ideal, and call ''irreducible'' an algebraic variety defined by a prime ideal. This article refers to zeroloci of not necessarily prime ideals as affine algebraic sets. In some contexts, it is useful to distinguish the field in which the coefficients are considered, from the algebraically closed field (containing ) over which the zerolocus is considered (that is, the points of the affine variety are in ). In this case, the variety is said ''defined over'' , and the points of the variety that belong to are said '' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Affine Variety
In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zerolocus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasiaffine variety. Some texts do not require a prime ideal, and call ''irreducible'' an algebraic variety defined by a prime ideal. This article refers to zeroloci of not necessarily prime ideals as affine algebraic sets. In some contexts, it is useful to distinguish the field in which the coefficients are considered, from the algebraically closed field (containing ) over which the zerolocus is considered (that is, the points of the affine variety are in ). In this case, the variety is said ''defined over'' , and the points of the variety that belong to are said '' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Algebraic Varieties
Algebraic varieties are the central objects of study in algebraic geometry, a subfield of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, nonirreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determine ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise " Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space toge ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Regular Function
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no nonconstant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well. Definition If ''X'' and ''Y'' are closed subvarieties of \mathbb^n and \mathbb^m (so they are affine varieties), then a regular map f\colon X\to Y is the restriction of a polynomial map \mathbb^n\to \mathbb^m. Explicitly, it has the form: :f = (f_1, \dots, f_m) where the f_is are in the coordinate ring of ''X'': :k = k _1, \dots, x_nI, where ''I'' is the ideal defining '' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily twosided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique maxim ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Algebraically Closed Field
In mathematics, a field is algebraically closed if every nonconstant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0 has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraica ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hilbert's Nullstellensatz
In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zerolocustheorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem). Formulation Let ''k'' be a field (such as the rational numbers) and ''K'' be an algebraically closed field extension (such as the complex numbers). Consider the polynomial ring k _1, \ldots, X_n/math> and let ''I'' be an ideal in this ring. The algebraic set V(''I'') defined by this ideal consists of all ''n''tuples x = (''x''1,...,''x''''n'') in ''Kn'' such that ''f''(x) = 0 for all ''f'' in ''I''. Hilbert's Nullstell ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= 1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every nonconstant polynomial equation with r ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Algebraic Set
Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a datatype in computer programming each of whose values is data from other datatypes wrapped in one of the constructors of the datatype * Algebraic numbers, a complex number that is a root of a nonzero polynomial in one variable with integer coefficients * Algebraic functions, functions satisfying certain polynomials * Algebraic element, an element of a field extension which is a root of some polynomial over the base field * Algebraic extension, a field extension such that every element is an algebraic element over the base field * Algebraic definition, a definition in mathematical logic which is given using only equalities between terms * Algebraic structure, a set with one or more finitary operations defined on it * Algebraic, the order of ent ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 