HOME



picture info

Zeta Function Universality
In mathematics, the universality of zeta functions is the remarkable ability of the Riemann zeta function and other similar functions (such as the Dirichlet L-functions) to approximate arbitrary non-vanishing holomorphic functions arbitrarily well. The universality of the Riemann zeta function was first proven by in 1975 and is sometimes known as Voronin's universality theorem. Formal statement A mathematically precise statement of universality for the Riemann zeta function follows. Let be a compact subset of the strip :\left\ such that the complement of is connected. Let be a continuous function on which is holomorphic on the interior of and does not have any zeros in . Then for any there exists a such that for all \ s \in U ~. Even more: The lower density of the set of values satisfying the above inequality is positive. Precisely \ 0 ~ < ~ \liminf_ ~ \frac \ \lambda\!\left( \left\ \right)\ , where \ \lambda\ is the

picture info

Limit Inferior
In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called infimum limit, limit infimum, liminf, inferior limit, lower limit, or inner limit; limit superior is also known as supremum limit, limit supremum, limsup, superior limit, upper limit, or outer limit. The limit inferior of a sequence (x_n) is denoted by \liminf_x_n\quad\text\quad \varliminf_x_n, and the limit superior of a sequence (x_n) is denote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lerch Zeta Function
In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887. The Lerch transcendent, is given by: :\Phi(z, s, \alpha) = \sum_^\infty \frac . It only converges for any real number \alpha > 0, where , z, 1, and , z, = 1. Special cases The Lerch transcendent is related to and generalizes various special functions. The Lerch zeta function is given by: :L(\lambda, s, \alpha) = \sum_^\infty \frac =\Phi(e^, s,\alpha) The Hurwitz zeta function is the special case :\zeta(s,\alpha) = \sum_^\infty \frac = \Phi(1,s,\alpha) The polylogarithm is another special case: :\textrm_s(z) = \sum_^\infty \frac =z\Phi(z,s,1) The Riemann zeta function is a special case of both of the above: :\zeta(s) =\sum_^\infty \frac = \Phi(1,s,1) The Dirichlet eta function: :\eta(s) = \sum_^\infty \frac = \Phi(-1,s,1) The Diric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selberg Zeta Function
The Selberg zeta-function was introduced by . It is analogous to the famous Riemann zeta function : \zeta(s) = \prod_ \frac where \mathbb is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the prime numbers. If \Gamma is a subgroup of SL(2,R), the associated Selberg zeta function is defined as follows, :\zeta_\Gamma(s)=\prod_p(1-N(p)^)^, or :Z_\Gamma(s)=\prod_p\prod^\infty_(1-N(p)^), where ''p'' runs over conjugacy classes of prime geodesics (equivalently, conjugacy classes of primitive hyperbolic elements of \Gamma), and ''N''(''p'') denotes \exp(\textp) (equivalently, the square of the bigger eigenvalue of ''p''). For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface. The zeros and poles of the Selberg zeta-function, ''Z''(''s''), can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linearly Independent
In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Theorem
Kronecker is a German surname. Notable people with the surname include: * Hugo Kronecker (1839–1914), German physiologist, brother of Leopold * Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker as having said, ... (1823–1891), German mathematician {{surname German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann Series Theorem
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges. This implies that a series of real numbers is absolutely convergent if and only if it is unconditionally convergent. As an example, the series : 1-1+\frac-\frac+\frac-\frac+\frac-\frac+\dots converges to 0 (for a sufficiently large number of terms, the partial sum gets arbitrarily near to 0); but replacing all terms with their absolute values gives : 1 + 1 + \frac + \frac + \frac + \frac + \dots which sums to infinity. Thus, the original series is conditionally convergent, and can be rearranged (by taking the first two positive terms followed by the first negative term, followed by the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conditionally Convergent
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\sum_^m a_n exists (as a finite real number, i.e. not \infty or -\infty), but \sum_^\infty \left, a_n\ = \infty. A classic example is the alternating harmonic series given by 1 - + - + - \cdots =\sum\limits_^\infty , which converges to \ln (2), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem. Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R''n'' can converge. Indefinite integrals may also be conditionally converg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The inner product allows lengths and angles to be defined. Furthermore, Complete metric space, completeness means that there are enough limit (mathematics), limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space. Hilbert spaces were studied beginning in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, mathematical formulation of quantum mechanics, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardy Space
In complex analysis, the Hardy spaces (or Hardy classes) H^p are spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are spaces of distributions on the real -space \mathbb^n, defined (in the sense of distributions) as boundary values of the holomorphic functions. Hardy spaces are related to the ''Lp'' spaces. For 1 \leq p < \infty these Hardy spaces are s of L^p spaces, while for 0 the L^p spaces have some undesirable properties, and the Hardy spaces are much better behaved. Hence, H^p spaces can be considered extensions of L^p spaces. Hardy spaces have a number of ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bergman Space
In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain ''D'' of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for , the Bergman space is the space of all holomorphic functions f in ''D'' for which the ''p''-norm is finite: :\, f\, _ := \left(\int_D , f(x+iy), ^p\,\mathrm dx\,\mathrm dy\right)^ < \infty. The quantity \, f\, _ is called the ''norm'' of the function ; it is a true norm if p \geq 1. Thus is the subspace of holomorphic functions that are in the space L''p''(''D''). The Bergman spaces are

picture info

Logarithm
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , then is the logarithm of to base , written , so . As a single-variable function, the logarithm to base is the inverse of exponentiation with base . The logarithm base is called the ''decimal'' or ''common'' logarithm and is commonly used in science and engineering. The ''natural'' logarithm has the number  as its base; its use is widespread in mathematics and physics because of its very simple derivative. The ''binary'' logarithm uses base and is widely used in computer science, information theory, music theory, and photography. When the base is unambiguous from the context or irrelevant it is often omitted, and the logarithm is written . Logarithms were introduced by John Napier in 1614 as a means of simplifying calculation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]