HOME





Zero-knowledge Proof
In cryptography, a zero-knowledge proof (also known as a ZK proof or ZKP) is a protocol in which one party (the prover) can convince another party (the verifier) that some given statement is true, without conveying to the verifier any information ''beyond'' the mere fact of that statement's truth. The intuition underlying zero-knowledge proofs is that it is trivial to prove possession of the relevant information simply by revealing it; the hard part is to prove this possession without revealing this information (or any aspect of it whatsoever). In light of the fact that one should be able to generate a proof of some statement ''only'' when in possession of certain secret information connected to the statement, the verifier, even after having become convinced of the statement's truth, should nonetheless remain unable to prove the statement to further third parties. Zero-knowledge proofs can be interactive, meaning that the prover and verifier exchange messages according to some pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), adversarial behavior. More generally, cryptography is about constructing and analyzing Communication protocol, protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security (confidentiality, data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, Smart card#EMV, chip-based payment cards, digital currencies, password, computer passwords, and military communications. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Turing Machine
In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can (unlike a deterministic Turing machine) have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution. In the case of equal probabilities for the transitions, probabilistic Turing machines can be defined as deterministic Turing machines having an additional "write" instruction where the value of the write is uniformly distributed in the Turing machine's alphabet (generally, an equal likelihood of writing a "1" or a "0" on to the tape). Another common reformulation is simply a deterministic Turing machine with an added tape full of random bits ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistically Close
In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points. A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence, and hence these distances are not directly related to measures of distances between probability measures. Again, a measure of distance between random variables may relate to the extent of dependence between them, rather than to their individual values. Many statistical distance measures are not metrics, and some are not symmetric. Some types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Isomorphism Problem
The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. The problem is not known to be solvable in polynomial time nor to be NP-complete, and therefore may be in the computational complexity class NP-intermediate. It is known that the graph isomorphism problem is in the low hierarchy of class NP, which implies that it is not NP-complete unless the polynomial time hierarchy collapses to its second level. At the same time, isomorphism for many special classes of graphs can be solved in polynomial time, and in practice graph isomorphism can often be solved efficiently. This problem is a special case of the subgraph isomorphism problem, which asks whether a given graph ''G'' contains a subgraph that is isomorphic to another given graph ''H''; this problem is known to be NP-complete. It is also known to be a special case of the non-abelian hidden subgroup problem over the symmetric group. In the area of image r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commitment Scheme
A commitment scheme is a cryptographic primitive that allows one to commit to a chosen value (or chosen statement) while keeping it hidden to others, with the ability to reveal the committed value later.Oded Goldreich (2001). Foundations of Cryptography': Volume 1, Basic Tools. Cambridge University Press. . Commitment schemes are designed so that a party cannot change the value or statement after they have committed to it: that is, commitment schemes are ''binding''. Commitment schemes have important applications in a number of cryptographic protocols including secure coin flipping, zero-knowledge proofs, and secure computation. A way to visualize a commitment scheme is to think of a sender as putting a message in a locked box, and giving the box to a receiver. The message in the box is hidden from the receiver, who cannot open the lock themselves. Since the receiver has the box, the message inside cannot be changed—merely revealed if the sender chooses to give them the key ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Isomorphism
In graph theory, an isomorphism of graphs ''G'' and ''H'' is a bijection between the vertex sets of ''G'' and ''H'' : f \colon V(G) \to V(H) such that any two vertices ''u'' and ''v'' of ''G'' are adjacent in ''G'' if and only if f(u) and f(v) are adjacent in ''H''. This kind of bijection is commonly described as "edge-preserving bijection", in accordance with the general notion of isomorphism being a structure-preserving bijection. If an isomorphism exists between two graphs, then the graphs are called isomorphic, often denoted by G\simeq H. In the case when the isomorphism is a mapping of a graph onto itself, i.e., when ''G'' and ''H'' are one and the same graph, the isomorphism is called an automorphism of ''G''. Graph isomorphism is an equivalence relation on graphs and as such it partitions the class of all graphs into equivalence classes. A set of graphs isomorphic to each other is called an isomorphism class of graphs. The question of whether graph isomorphism can be dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-complete
In computational complexity theory, NP-complete problems are the hardest of the problems to which ''solutions'' can be verified ''quickly''. Somewhat more precisely, a problem is NP-complete when: # It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". # When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) ''solution''. # The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions. # The problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. Hence, if we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified. The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph (discrete Mathematics)
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a Set (mathematics), set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing mon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Path
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details. Hamiltonian paths and cycles are named after William Rowan Hamilton, who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Manuel Blum
Manuel Blum (born 26 April 1938) is a Venezuelan-born American computer scientist who received the Turing Award in 1995 "In recognition of his contributions to the foundations of computational complexity theory and its application to cryptography and program checking". Education Blum was born to a Jewish family in Venezuela. Blum was educated at MIT, where he received his bachelor's degree and his master's degree in electrical engineering in 1959 and 1961 respectively. In MIT, he was recommended to Warren S. McCulloch, and they collaborated on some mathematical problems in neural networks. He obtained a Ph.D. in mathematics in 1964 supervised by Marvin Minsky.. Career Blum worked as a professor of computer science at the University of California, Berkeley until 2001. From 2001 to 2018, he was the Bruce Nelson Professor of Computer Science at Carnegie Mellon University, where his wife, Lenore Blum, was also a professor of computer science. In 2002, he was elected to the Unit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Multiplicative Inverse
In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer is an integer such that the product is congruent to 1 with respect to the modulus .. In the standard notation of modular arithmetic this congruence is written as :ax \equiv 1 \pmod, which is the shorthand way of writing the statement that divides (evenly) the quantity , or, put another way, the remainder after dividing by the integer is 1. If does have an inverse modulo , then there is an infinite number of solutions of this congruence, which form a congruence class with respect to this modulus. Furthermore, any integer that is congruent to (i.e., in 's congruence class) has any element of 's congruence class as a modular multiplicative inverse. Using the notation of \overline to indicate the congruence class containing , this can be expressed by saying that the ''modulo multiplicative inverse'' of the congruence class \overline is the congruence class \overline such that: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 Ã— 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]