HOME
*



picture info

Wiles's Proof Of Fermat's Last Theorem
Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were almost universally considered inaccessible to prove by contemporaneous mathematicians, meaning that they were believed to be impossible to prove using current knowledge. Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations". However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of isworking life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995. Wiles's proof uses many techniques from algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Andrew Wiles1-3
Andrew is the English form of a given name common in many countries. In the 1990s, it was among the top ten most popular names given to boys in English-speaking countries. "Andrew" is frequently shortened to "Andy" or "Drew". The word is derived from the el, Ἀνδρέας, ''Andreas'', itself related to grc, ἀνήρ/ἀνδρός ''aner/andros'', "man" (as opposed to "woman"), thus meaning "manly" and, as consequence, "brave", "strong", "courageous", and "warrior". In the King James Bible, the Greek "Ἀνδρέας" is translated as Andrew. Popularity Australia In 2000, the name Andrew was the second most popular name in Australia. In 1999, it was the 19th most common name, while in 1940, it was the 31st most common name. Andrew was the first most popular name given to boys in the Northern Territory in 2003 to 2015 and continuing. In Victoria, Andrew was the first most popular name for a boy in the 1970s. Canada Andrew was the 20th most popular name chosen for male ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Horton Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life. Born and raised in Liverpool, Conway spent the first half of his career at the University of Cambridge before moving to the United States, where he held the John von Neumann Professorship at Princeton University for the rest of his career. On 11 April 2020, at age 82, he died of complications from COVID-19. Early life and education Conway was born on 26 December 1937 in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at a very early age. By the time he was 11, his ambition was to become a mathematician. After leaving sixth form, he studied mathematics at Gonville and Caius College, Ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frey Curve
In mathematics, a Frey curve or Frey–Hellegouarch curve is the elliptic curve ::y^2 = x(x - a^\ell)(x + b^\ell) associated with a (hypothetical) solution of Fermat's equation :a^\ell + b^\ell = c^\ell. The curve is named after Gerhard Frey. History came up with the idea of associating solutions (a,b,c) of Fermat's equation with a completely different mathematical object: an elliptic curve. If ℓ is an odd prime and ''a'', ''b'', and ''c'' are positive integers such that :a^\ell + b^\ell = c^\ell, then a corresponding Frey curve is an algebraic curve given by the equation :y^2 = x(x - a^\ell)(x + b^\ell) or, equivalently :y^2 = x(x - a^\ell)(x - c^\ell). This is a nonsingular algebraic curve of genus one defined over Q, and its projective completion is an elliptic curve over Q. called attention to the unusual properties of the same curve as Hellegouarch, which became called a Frey curve. This provided a bridge between Fermat and Taniyama by showing that a counterexampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gerhard Frey
Gerhard Frey (; born 1 June 1944) is a German mathematician, known for his work in number theory. Following an original idea of Hellegouarch, he developed the notion of Frey–Hellegouarch curves, a construction of an elliptic curve from a purported solution to the Fermat equation, that is central to Wiles's proof of Fermat's Last Theorem. Education and career He studied mathematics and physics at the University of Tübingen, graduating in 1967. He continued his postgraduate studies at Heidelberg University, where he received his PhD in 1970, and his Habilitation in 1973. He was assistant professor at Heidelberg University from 1969–1973, professor at the University of Erlangen (1973–1975) and at Saarland University (1975–1990). Until 2009, he held a chair for number theory at the Institute for Experimental Mathematics at the University of Duisburg-Essen, campus Essen. Frey was a visiting scientist at several universities and research institutions, including the Ohio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was a founding member and the ''de facto'' early leader of the mathematical Bourbaki group. The philosopher Simone Weil was his sister. The writer Sylvie Weil is his daughter. Life André Weil was born in Paris to agnostic Alsatian Jewish parents who fled the annexation of Alsace-Lorraine by the German Empire after the Franco-Prussian War in 1870–71. Simone Weil, who would later become a famous philosopher, was Weil's younger sister and only sibling. He studied in Paris, Rome and Göttingen and received his doctorate in 1928. While in Germany, Weil befriended Carl Ludwig Siegel. Starting in 1930, he spent two academic years at Aligarh Muslim University in India. Aside from mathematics, Weil held lifelong interests in classical Greek and Latin literature, in Hinduism and Sanskrit literature: he had taught himself Sanskrit in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Classical Modular Curve
In number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation :, such that is a point on the curve. Here denotes the -invariant. The curve is sometimes called , though often that notation is used for the abstract algebraic curve for which there exist various models. A related object is the classical modular polynomial, a polynomial in one variable defined as . It is important to note that the classical modular curves are part of the larger theory of modular curves. In particular it has another expression as a compactified quotient of the complex upper half-plane . Geometry of the modular curve The classical modular curve, which we will call , is of degree greater than or equal to when , with equality if and only if is a prime. The polynomial has integer coefficients, and hence is defined over every field. However, the coefficients are sufficiently large that computational work with the curve can be difficult. As a polynomial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory. A modular function is a function that is invariant with respect to the modular group, but without the condition that be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic (that is, they are holomorphic on the complement of a set of isolated points, which are poles of the function). Modular form theory is a special case of the more general theory of automorphic forms which are functions defined on Lie groups which transform nicely w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yutaka Taniyama
was a Japanese mathematician known for the Taniyama–Shimura conjecture. Contribution Taniyama was best known for conjecturing, in modern language, automorphic properties of L-functions of elliptic curves over any number field. A partial and refined case of this conjecture for elliptic curves over rationals is called the Taniyama–Shimura conjecture or the modularity theorem whose statement he subsequently refined in collaboration with Goro Shimura. The names Taniyama, Shimura and Weil have all been attached to this conjecture, but the idea is essentially due to Taniyama. “Taniyama's interests were in algebraic number theory and his fame is mainly due to two problems posed by him at the symposium on Algebraic Number Theory held in Tokyo and Nikko in 1955. His meeting with André Weil at this symposium was to have a major influence on Taniyama's work. These problems form the basis of a conjecture: every elliptic curve defined over the rational field is a factor of the Jacob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goro Shimura
was a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multiplication of abelian varieties and Shimura varieties, as well as posing the Taniyama–Shimura conjecture which ultimately led to the proof of Fermat's Last Theorem. Biography Gorō Shimura was born in Hamamatsu, Japan, on 23 February 1930. Shimura graduated with a B.A. in mathematics and a D.Sc. in mathematics from the University of Tokyo in 1952 and 1958, respectively. After graduating, Shimura became a lecturer at the University of Tokyo, then worked abroad — including ten months in Paris and a seven-month stint at Princeton's Institute for Advanced Study — before returning to Tokyo, where he married Chikako Ishiguro. He then moved from Tokyo to join the faculty of Osaka University, but growing unhappy with his funding situation, he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norwegian Academy Of Science And Letters
The Norwegian Academy of Science and Letters ( no, Det Norske Videnskaps-Akademi, DNVA) is a learned society based in Oslo, Norway. Its purpose is to support the advancement of science and scholarship in Norway. History The Royal Frederick University in Christiania was established in 1811. The idea of a learned society in Christiania surfaced for the first time in 1841. The city of Trondhjem had no university, but had a learned society, the Royal Norwegian Society of Sciences and Letters, established in 1760. The purpose of a learned society in Christiania was to support scientific studies and aid publication of academic papers. The idea of the Humboldt-inspired university, where independent research stood strong, had taken over for the instrumental view of a university as a means to produce civil servants. The city already had societies for specific professions, for instance the Norwegian Medical Society which was founded in 1833. However, these societies were open for both a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abel Prize
The Abel Prize ( ; no, Abelprisen ) is awarded annually by the King of Norway to one or more outstanding mathematicians. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) and directly modeled after the Nobel Prizes. It comes with a monetary award of 7.5 million Norwegian kroner (NOK; increased from 6 million NOK in 2019). The Abel Prize's history dates back to 1899, when its establishment was proposed by the Norwegian mathematician Sophus Lie when he learned that Alfred Nobel's plans for annual prizes would not include a prize in mathematics. In 1902, King Oscar II of Sweden and Norway indicated his willingness to finance the creation of a mathematics prize to complement the Nobel Prizes, but the establishment of the prize was prevented by the dissolution of the union between Norway and Sweden in 1905. It took almost a century before the prize was finally established by the Government of Norway in 2001, and it was specifically intended "to giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]