Wagstaff Prime
   HOME
*





Wagstaff Prime
In number theory, a Wagstaff prime is a prime number of the form : where ''p'' is an odd prime. Wagstaff primes are named after the mathematician Samuel S. Wagstaff Jr.; the prime pages credit François Morain for naming them in a lecture at the Eurocrypt 1990 conference. Wagstaff primes appear in the New Mersenne conjecture and have applications in cryptography. Examples The first three Wagstaff primes are 3, 11, and 43 because : \begin 3 & = , \\ pt11 & = , \\ pt43 & = . \end Known Wagstaff primes The first few Wagstaff primes are: :3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, … , known exponents which produce Wagstaff primes or probable primes are: :3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239 (all known Wagstaff primes) :127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399, …, 13 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Samuel S
Samuel ''Šəmūʾēl'', Tiberian: ''Šămūʾēl''; ar, شموئيل or صموئيل '; el, Σαμουήλ ''Samouḗl''; la, Samūēl is a figure who, in the narratives of the Hebrew Bible, plays a key role in the transition from the biblical judges to the United Kingdom of Israel under Saul, and again in the monarchy's transition from Saul to David. He is venerated as a prophet in Judaism, Christianity, and Islam. In addition to his role in the Hebrew scriptures, Samuel is mentioned in Jewish rabbinical literature, in the Christian New Testament, and in the second chapter of the Quran (although Islamic texts do not mention him by name). He is also treated in the fifth through seventh books of '' Antiquities of the Jews'', written by the Jewish scholar Josephus in the first century. He is first called "the Seer" in 1 Samuel 9:9. Biblical account Family Samuel's mother was Hannah and his father was Elkanah. Elkanah lived at Ramathaim in the district of Zuph. His geneal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eric W
The given name Eric, Erich, Erikk, Erik, Erick, or Eirik is derived from the Old Norse name ''Eiríkr'' (or ''Eríkr'' in Old East Norse due to monophthongization). The first element, ''ei-'' may be derived from the older Proto-Norse ''* aina(z)'', meaning "one, alone, unique", ''as in the form'' ''Æ∆inrikr'' explicitly, but it could also be from ''* aiwa(z)'' "everlasting, eternity", as in the Gothic form ''Euric''. The second element ''- ríkr'' stems either from Proto-Germanic ''* ríks'' "king, ruler" (cf. Gothic ''reiks'') or the therefrom derived ''* ríkijaz'' "kingly, powerful, rich, prince"; from the common Proto-Indo-European root * h₃rḗǵs. The name is thus usually taken to mean "sole ruler, autocrat" or "eternal ruler, ever powerful". ''Eric'' used in the sense of a proper noun meaning "one ruler" may be the origin of ''Eriksgata'', and if so it would have meant "one ruler's journey". The tour was the medieval Swedish king's journey, when newly elected, to s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Repunit
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreations in the Theory of Numbers''. A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes. As of March 2022, the largest known prime number , the largest probable prime ''R''8177207 and the largest elliptic curve primality prime ''R''49081 are all repunits. Definition The base-''b'' repunits are defined as (this ''b'' can be either positive or negative) :R_n^\equiv 1 + b + b^2 + \cdots + b^ = \qquad\mbox, b, \ge2, n\ge1. Thus, the number ''R''''n''(''b'') consists of ''n'' copies of the digit 1 in base-''b'' representation. The first two repunits base-''b'' for ''n'' = 1 and ''n'' = 2 are :R_1^ 1 \qquad \text \qquad R_2^ b+1\qquad\text\ , b, \ge2. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aurifeuillean Factorization
In number theory, an aurifeuillean factorization, named after Léon-François-Antoine Aurifeuille, is a special type of algebraic factorization that comes from non-trivial factorizations of cyclotomic polynomials over the integers. Although cyclotomic polynomials themselves are irreducible over the integers, when restricted to particular integer values they may have an algebraic factorization, as in the examples below. Examples * Numbers of the form a^4 + 4b^4 have the following aurifeuillean factorization (see also Sophie Germain's identity): :: a^4 + 4b^4 = (a^2 - 2ab + 2b^2)\cdot (a^2 + 2ab + 2b^2) * Setting a=1 and b=2^k, one obtains the following aurifeuillean factorization of 2^+1: :: 2^+1 = (2^-2^+1)\cdot (2^+2^+1) * Numbers of the form b^n - 1 or \Phi_n(b), where b = s^2 \cdot t with square-free t, have aurifeuillean factorization if and only if one of the following conditions holds: ** t\equiv 1 \pmod 4 and n\equiv t \pmod ** t\equiv 2, 3 \pmod 4 and n\equiv 2t \pmo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Repunit
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreations in the Theory of Numbers''. A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes. As of March 2022, the largest known prime number , the largest probable prime ''R''8177207 and the largest elliptic curve primality prime ''R''49081 are all repunits. Definition The base-''b'' repunits are defined as (this ''b'' can be either positive or negative) :R_n^\equiv 1 + b + b^2 + \cdots + b^ = \qquad\mbox, b, \ge2, n\ge1. Thus, the number ''R''''n''(''b'') consists of ''n'' copies of the digit 1 in base-''b'' representation. The first two repunits base-''b'' for ''n'' = 1 and ''n'' = 2 are :R_1^ 1 \qquad \text \qquad R_2^ b+1\qquad\text\ , b, \ge2. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harvey Dubner
Harvey Dubner (1928–2019) was an electrical engineer and mathematician who lived in New Jersey, noted for his contributions to finding large prime numbers. In 1984, he and his son Robert collaborated in developing the 'Dubner cruncher', a board which used a commercial finite impulse response filter chip to speed up dramatically the multiplication of medium-sized multi-precision numbers, to levels competitive with supercomputers of the time, though his focus later changed to efficient implementation of FFT-based algorithms on personal computers. He found many large prime numbers of special forms: repunits, Fibonacci primes, prime Lucas numbers, twin primes, Sophie Germain primes, Belphegor's prime, and primes in arithmetic progression In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a_n = 3 + 4n for 0 \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lucas–Lehmer–Riesel Test
In mathematics, the Lucas–Lehmer–Riesel test is a primality test for numbers of the form ''N'' = ''k'' ⋅ 2''n'' − 1 (Riesel numbers) with odd ''k'' < 2''n''. The test was developed by Hans Riesel and it is based on the Lucas–Lehmer primality test. It is the fastest deterministic algorithm known for numbers of that form. For numbers of the form ''N'' = ''k'' ⋅ 2''n'' + 1 (Proth numbers), either application of Proth's theorem (a Las Vegas algorithm) or one of the deterministic proofs described in Brillhart-Lehmer-Selfridge 1975 (see Pocklington primality test) are used. The algorithm The algorithm is very similar to the Lucas–Lehmer test, but with a variable starting point depending on the value of ''k''. Define a sequence ''u''''i'' for all ''i'' > 0 by: : u_i = u_^2-2. \, Then ''N'' = ''k'' ⋅ 2''n'' − 1, with ''k'' < 2''n'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Pages
The PrimePages is a website about prime numbers maintained by Chris Caldwell at the University of Tennessee at Martin. The site maintains the list of the "5,000 largest known primes", selected smaller primes of special forms, and many "top twenty" lists for primes of various forms. , the 5,000th prime has around 412,000 digits.. Retrieved on 2018-02-12. The PrimePages has articles on primes and primality testing. It includes "The Prime Glossary" with articles on hundreds of glosses related to primes, and "Prime Curios!" with thousands of curios about specific numbers. The database started as a list of titanic primes (primes with at least 1000 decimal digits) by Samuel Yates. In subsequent years, the whole top-5,000 has consisted of gigantic primes (primes with at least 10,000 decimal digits). Primes of special forms are kept on the current lists if they are titanic and in the top-20 or top-5 for their form. See also *List of prime numbers This is a list of articles about pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Opteron
Opteron is AMD's x86 former server and workstation processor line, and was the first processor which supported the AMD64 instruction set architecture (known generically as x86-64 or AMD64). It was released on April 22, 2003, with the ''SledgeHammer'' core (K8) and was intended to compete in the server and workstation markets, particularly in the same segment as the Intel Xeon processor. Processors based on the AMD K10 microarchitecture (codenamed ''Barcelona'') were announced on September 10, 2007, featuring a new quad-core configuration. The most-recently released Opteron CPUs are the Piledriver-based Opteron 4300 and 6300 series processors, codenamed "Seoul" and "Abu Dhabi" respectively. In January 2016, the first ARMv8-A based Opteron-branded SoC was released, though it is unclear what, if any, heritage this Opteron-branded product line shares with the original Opteron technology other than intended use in the server space. Technical description Two key capabilities Opt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elliptic Curve Primality Proving
In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and , in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing (and proving) followed quickly. Primality testing is a field that has been around since the time of Fermat, in whose time most algorithms were based on factoring, which become unwieldy with large input; modern algorithms treat the problems of determining whether a number is prime and what its factors are separately. It became of practical importance with the advent of modern cryptography. Although many current ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probable Prime
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare. Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer ''n'', choose some integer ''a'' that is not a multiple of ''n''; (typically, we choose ''a'' in the range ). Calculate . If the result is not 1, then ''n'' is composite. If the result is 1, then ''n'' is likely to be prime; ''n'' is then called a probable prime to base ''a''. A weak probable prime to base ''a'' is an integer that is a probable prime to base ''a'', but which is not a strong probable prime to base ''a'' (see below). For a fixed base ''a'', it is unusual f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]