HOME





Winsorized Mean
A winsorized mean is a winsorized statistical measure of central tendency, much like the mean and median, and even more similar to the truncated mean. It involves the calculation of the mean after winsorizing — replacing given parts of a probability distribution or sample at the high and low end with the most extreme remaining values, Dodge, Y (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. (entry for "winsorized estimation") typically doing so for an equal amount of both extremes; often 10 to 25 percent of the ends are replaced. The winsorized mean can equivalently be expressed as a weighted average of the truncated mean and the quantiles at which it is limited, which corresponds to replacing parts with the corresponding quantiles. Advantages The winsorized mean is a useful estimator because by retaining the outliers without taking them too literally, it is less sensitive to observations at the extremes than the straightforward mean, and will still generate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Winsorising
Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. It is named after the engineer-turned-biostatistician Charles P. Winsor (1895–1951). The effect is the same as clipping in signal processing. The distribution of many statistics can be heavily influenced by outliers, values that are 'way outside' the bulk of the data. A typical strategy to account for, without eliminating altogether, these outlier values is to 'reset' outliers to a specified percentile (or an upper and lower percentile) of the data. For example, a 90% winsorization would see all data below the 5th percentile set to the 5th percentile, and all data above the 95th percentile set to the 95th percentile. Winsorized estimators are usually more robust to outliers than their more standard forms, although there are alternatives, such as trimming (see below), that will achieve a similar effect. Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weighted Average
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general form in several other areas of mathematics. If all the weights are equal, then the weighted mean is the same as the arithmetic mean. While weighted means generally behave in a similar fashion to arithmetic means, they do have a few counterintuitive properties, as captured for instance in Simpson's paradox. Examples Basic example Given two school with 20 students, one with 30 test grades in each class as follows: :Morning class = :Afternoon class = The mean for the morning class is 80 and the mean of the afternoon class is 90. The unweighted mean of the two means is 85. However, this does not account for the difference in number of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Means
Means may refer to: * Means LLC, an anti-capitalist media worker cooperative * Means (band), a Christian hardcore band from Regina, Saskatchewan * Means, Kentucky, a town in the US * Means (surname) * Means Johnston Jr. (1916–1989), US Navy admiral * Means, in ethics, something of instrumental value that helps to achieve an end ** Means, an indicator of suspicion in a criminal investigation Criminal investigation is an applied science that involves the study of facts that are then used to inform criminal trials. A complete criminal investigation can include Search and seizure, searching, interviews, interrogations, Evidence (law), ... See also * Ways and means committee, a government body charged with reviewing and making recommendations for government budgets * Mean (other) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Truncated Mean
A truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median. It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points. For most statistical applications, 5 to 25 percent of the ends are discarded. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points. The 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the interquartile mean. The median can be regarded as a fully truncated mean and is most robust. As with other trimmed estimators, the main advantage of the trimmed mean is ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Statistic
In statistics, the ''k''th order statistic of a statistical sample is equal to its ''k''th-smallest value. Together with Ranking (statistics), rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and non-parametric inference, inference. Important special cases of the order statistics are the minimum and maximum value of a sample, and (with some qualifications discussed below) the sample median and other quantile, sample quantiles. When using probability theory to analyze order statistics of random samples from a continuous probability distribution, continuous distribution, the cumulative distribution function is used to reduce the analysis to the case of order statistics of the uniform distribution (continuous), uniform distribution. Notation and examples For example, suppose that four numbers are observed or recorded, resulting in a sample of size 4. If the sample values are :6, 9, 3, 7, the order statistics would be denoted : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unbiased Estimator
In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called ''unbiased''. In statistics, "bias" is an property of an estimator. Bias is a distinct concept from Consistent estimator, consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased (see Consistent estimator#Bias versus consistency, bias versus consistency for more). All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Probability Distribution
In statistics, a symmetric probability distribution is a probability distribution—an assignment of probabilities to possible occurrences—which is unchanged when its probability density function (for continuous probability distribution) or probability mass function (for discrete random variables) is reflected around a vertical line at some value of the random variable represented by the distribution. This vertical line is the line of symmetry of the distribution. Thus the probability of being any given distance on one side of the value about which symmetry occurs is the same as the probability of being the same distance on the other side of that value. Formal definition A probability distribution is said to be symmetric if and only if there exists a value x_0 such that : f(x_0-\delta) = f(x_0+\delta) for all real numbers \delta , where ''f'' is the probability density function if the distribution is continuous or the probability mass function if the distribution is discre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robust Estimator
Robust statistics are statistics that maintain their properties even if the underlying distributional assumptions are incorrect. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard deviations; under this model, non-robust methods like a t-test work poorly. Introduction Robust statistics seek to provide methods that emulate popular statistical methods, but are not unduly affected by outliers or other small departures from model assumptions. In statistics, classical estimation methods rely heavily on assumptions that are often not met in practice. In particular, it is often assumed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outlier
In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to a variability in the measurement, an indication of novel data, or it may be the result of experimental error; the latter are sometimes excluded from the data set. An outlier can be an indication of exciting possibility, but can also cause serious problems in statistical analyses. Outliers can occur by chance in any distribution, but they can indicate novel behaviour or structures in the data-set, measurement error, or that the population has a heavy-tailed distribution. In the case of measurement error, one wishes to discard them or use statistics that are robust statistics, robust to outliers, while in the case of heavy-tailed distributions, they indicate that the distribution has high skewness and that one should be very cautious in using tools or intuitions that assume a normal distribution. A frequent cause of outliers is a mixture of two distributions, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yadolah Dodge
Yadolah Dodge (, also as "Yadollāh Dāj") is an Iranian and Swiss statistician. His major contributions are in the theory of operational research, design of experiments, simulation, and regression. Early life He spent his early years in Abadan, Iran. He went then to the Gundeshapur or Jundi Shapour University and obtained his Post Licentiate in Engineering in Agriculture in 1966 with distinction. He got his PhD at the Oregon State University in 1974. Work In the 1980s he became professor of statistics at the University of Neuchâtel, Switzerland, where he is a professor emeritus. He is author of more than 60 papers and 25 books, many of which have appeared in multiple editions. Dodge, Yadolah
www.oclc.org © 2011 manual OCLC Online Computer Library Center In 2015 Professor Dodge started the 'Iranian Film Festival Zurich' in order to ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sampling (statistics)
In this statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a population (statistics), statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population (in many cases, collecting the whole population is impossible, like getting sizes of all stars in the universe), and thus, it can provide insights in cases where it is infeasible to measure an entire population. Each observation measures one or more properties (such as weight, location, colour or mass) of independent objects or individuals. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly in stratified samplin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]