Wedderburn–Artin Theorem
   HOME





Wedderburn–Artin Theorem
In algebra, the Wedderburn–Artin theorem is a classification theorem for semisimple rings and semisimple algebras. The theorem states that an (Artinian) semisimple ring ''R'' is isomorphic to a product of finitely many -by- matrix rings over division rings , for some integers , both of which are uniquely determined up to permutation of the index . In particular, any simple left or right Artinian ring is isomorphic to an ''n''-by-''n'' matrix ring over a division ring ''D'', where both ''n'' and ''D'' are uniquely determined. Theorem Let be a (Artinian) semisimple ring. Then the Wedderburn–Artin theorem states that is isomorphic to a product of finitely many -by- matrix rings M_(D_i) over division rings , for some integers , both of which are uniquely determined up to permutation of the index . There is also a version of the Wedderburn–Artin theorem for algebras over a field . If is a finite-dimensional semisimple -algebra, then each in the above statement is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Module
In mathematics, specifically in ring theory, the simple modules over a ring ''R'' are the (left or right) modules over ''R'' that are non-zero and have no non-zero proper submodules. Equivalently, a module ''M'' is simple if and only if every cyclic submodule generated by a element of ''M'' equals ''M''. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory. In this article, all modules will be assumed to be right unital modules over a ring ''R''. Examples Z-modules are the same as abelian groups, so a simple Z-module is an abelian group which has no non-zero proper subgroups. These are the cyclic groups of prime order. If ''I'' is a right ideal of ''R'', then ''I'' is simple as a right module if and only if ''I'' is a minimal non-zero right ideal: If ''M'' is a non-zero proper submodule of ''I'', then it is also a right ideal, so ''I'' is not minimal. Conversely, if ''I'' is not mini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer Group
In mathematics, the Brauer group of a field ''K'' is an abelian group whose elements are Morita equivalence classes of central simple algebras over ''K'', with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer. The Brauer group arose out of attempts to classify division algebras over a field. It can also be defined in terms of Galois cohomology. More generally, the Brauer group of a scheme is defined in terms of Azumaya algebras, or equivalently using projective bundles. Construction A central simple algebra (CSA) over a field ''K'' is a finite-dimensional associative ''K''-algebra ''A'' such that ''A'' is a simple ring and the center of ''A'' is equal to ''K''. Note that CSAs are in general ''not'' division algebras, though CSAs can be used to classify division algebras. For example, the complex numbers C form a CSA over themselves, but not over R (the center is C itself, hence too large to be CSA over R). The fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maschke's Theorem
In mathematics, Maschke's theorem, named after Heinrich Maschke, is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make general conclusions about representations of a finite group ''G'' without actually computing them. It reduces the task of classifying all representations to a more manageable task of classifying irreducible representations, since when the theorem applies, any representation is a direct sum of irreducible pieces (constituents). Moreover, it follows from the Jordan–Hölder theorem that, while the decomposition into a direct sum of irreducible subrepresentations may not be unique, the irreducible pieces have well-defined multiplicities. In particular, a representation of a finite group over a field of characteristic zero is determined up to isomorphism by its character. Formulations Maschke's theorem addresses the question: when is a gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Central Simple Algebra
In ring theory and related areas of mathematics a central simple algebra (CSA) over a field ''K'' is a finite-dimensional associative ''K''-algebra ''A'' that is simple, and for which the center is exactly ''K''. (Note that ''not'' every simple algebra is a central simple algebra over its center: for instance, if ''K'' is a field of characteristic 0, then the Weyl algebra K ,\partial_X/math> is a simple algebra with center ''K'', but is ''not'' a central simple algebra over ''K'' as it has infinite dimension as a ''K''-module.) For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below). Given two central simple algebras ''A'' ~ ''M''(''n'',''S'') and ''B'' ~ ''M''(''m'',''T'') over the same field ''F'', ''A'' and ''B'' are called ''similar'' (or '' Brauer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraically Closed Field
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra holds for it. Every field K is contained in an algebraically closed field C, and the roots in C of the polynomials with coefficients in K form an algebraically closed field called an algebraic closure of K. Given two algebraic closures of K there are isomorphisms between them that fix the elements of K. Algebraically closed fields appear in the following chain of class inclusions: Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation x^2+1=0 has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrians, Austrian and Armenian people, Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as "opera singer" though others list it as "art dealer." It see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph Wedderburn
Joseph Henry Maclagan Wedderburn FRSE FRS (2 February 1882 – 9 October 1948) was a Scottish mathematician, who taught at Princeton University for most of his career. A significant algebraist, he proved that a finite division algebra is a field ( Wedderburn's little theorem), and part of the Artin–Wedderburn theorem on simple algebras. He also worked on group theory and matrix algebra. His younger brother was the lawyer Ernest Wedderburn. Life Joseph Wedderburn was the tenth of fourteen children of Alexander Wedderburn of Pearsie, a physician, and Anne Ogilvie. He was educated at Forfar Academy then in 1895 his parents sent Joseph and his younger brother Ernest to live in Edinburgh with their paternal uncle, J. R. Maclagan Wedderburn, allowing them to attend George Watson's College. This house was at 3 Glencairn Crescent in the West End of the city. In 1898 Joseph entered the University of Edinburgh. In 1903, he published his first three papers, worked as an assistant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simple Algebra
In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field. Several references (e.g., or ) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple). Under such terminology a non-zero ring with no non-trivial two-sided ideals is called quasi-simple. Rings which are simple as rings but are not a simple module over themselves do exist: a full matrix ring over a field does not have any nontrivial two-sided ideals (since any ideal of M_n(R) is of the form M_n(I) with I an ideal of R), but it has nontrivial left ideals (for example, the sets of matrices which have some fixed zero columns). An immediate ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decomposition Of A Module
In abstract algebra, a decomposition of a module is a way to write a module as a direct sum of modules. A type of a decomposition is often used to define or characterize modules: for example, a semisimple module is a module that has a decomposition into simple modules. Given a ring, the types of decomposition of modules over the ring can also be used to define or characterize the ring: a ring is semisimple if and only if every module over it is a semisimple module. An indecomposable module is a module that is not a direct sum of two nonzero submodules. Azumaya's theorem states that if a module has an decomposition into modules with local endomorphism rings, then all decompositions into indecomposable modules are equivalent to each other; a special case of this, especially in group theory, is known as the Krull–Schmidt theorem. A special case of a decomposition of a module is a decomposition of a ring: for example, a ring is semisimple if and only if it is a direct sum (in fact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Opposite Algebra
In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring is the ring whose multiplication ∗ is defined by for all in ''R''. The opposite ring can be used to define multimodules, a generalization of bimodules. They also help clarify the relationship between left and right modules (see '). Monoids, groups, rings, and algebras can all be viewed as categories with a single object. The construction of the opposite category generalizes the opposite group, opposite ring, etc. Relation to automorphisms and antiautomorphisms In this section the symbol for multiplication in the opposite ring is changed from asterisk to diamond, to avoid confusing it with some unary operations. A ring is called a ''self-opposite'' ring if it is isomorphic to its opposite ring, which name indicates that R^\text is essentiall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schur's Lemma
In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if ''M'' and ''N'' are two finite-dimensional irreducible representations of a group ''G'' and ''φ'' is a linear map from ''M'' to ''N'' that commutes with the action of the group, then either ''φ'' is invertible, or ''φ'' = 0. An important special case occurs when ''M'' = ''N'', i.e. ''φ'' is a self-map; in particular, any element of the center of a group must act as a scalar operator (a scalar multiple of the identity) on ''M''. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen. Representation theory of groups Representation theory is the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]