Wartenberg's Coefficient
   HOME





Wartenberg's Coefficient
Wartenberg's coefficient is a measure of correlation developed by epidemiologist Daniel Wartenberg. This coefficient is a multivariate extension of spatial autocorrelation that aims to account for spatial dependence of data while studying their covariance. A modified version of this statistic is available in the R package ''adespatial''. For data x_i measured at N spatial sites Moran's I is a measure of the spatial autocorrelation of the data. By standardizing the observations z_i = (x_i - \bar)/s by subtracting the mean and dividing by the variance as well as normalising the spatial weight matrix such that \sum_ w_ = 1 we can write Moran's ''I'' as :I = \sum_ w_ z_i z_j Wartenberg generalized this by letting z_i be a vector of M observations at i and defining where: :I = Z^T W Z * W is the N \times N spatial weight matrix * Z is the N \times M standardized data matrix * Z^T is the transpose of Z * I is the M \times M spatial correlation matrix. For two variables x and y the b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel Wartenberg
Daniel commonly refers to: * Daniel (given name), a masculine given name and a surname * List of people named Daniel * List of people with surname Daniel * Daniel (biblical figure) * Book of Daniel, a biblical apocalypse, "an account of the activities and visions of Daniel" Daniel may also refer to: Arts and entertainment Literature * ''Daniel'' (Old English poem), an adaptation of the Book of Daniel * ''Daniel'', a 2006 novel by Richard Adams * ''Daniel'' (Mankell novel), 2007 Music * "Daniel" (Bat for Lashes song) (2009) * "Daniel" (Elton John song) (1973) * "Daniel", a song from ''Beautiful Creature'' by Juliana Hatfield * ''Daniel'' (album), a 2024 album by Real Estate Other arts and entertainment * ''Daniel'' (1983 film), by Sidney Lumet * ''Daniel'' (2019 film), a Danish film * Daniel (comics), a character in the ''Endless'' series Businesses * Daniel (department store), in the United Kingdom * H & R Daniel, a producer of English porcelain between 1827 and 1846 * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covariance
In probability theory and statistics, covariance is a measure of the joint variability of two random variables. The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one variable mainly correspond with greater values of the other variable, and the same holds for lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when greater values of one variable mainly correspond to lesser values of the other (that is, the variables tend to show opposite behavior), the covariance is negative. The magnitude of the covariance is the geometric mean of the variances that are in common for the two random variables. The Pearson product-moment correlation coefficient, correlation coefficient normalizes the covariance by dividing by the geometric mean of the total variances for the two random variables. A distinction must be made between (1) the covariance of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

R (programming Language)
R is a programming language for statistical computing and Data and information visualization, data visualization. It has been widely adopted in the fields of data mining, bioinformatics, data analysis, and data science. The core R language is extended by a large number of R package, software packages, which contain Reusability, reusable code, documentation, and sample data. Some of the most popular R packages are in the tidyverse collection, which enhances functionality for visualizing, transforming, and modelling data, as well as improves the ease of programming (according to the authors and users). R is free and open-source software distributed under the GNU General Public License. The language is implemented primarily in C (programming language), C, Fortran, and Self-hosting (compilers), R itself. Preprocessor, Precompiled executables are available for the major operating systems (including Linux, MacOS, and Microsoft Windows). Its core is an interpreted language with a na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moran's I
In statistics, Moran's ''I'' is a measure of spatial autocorrelation developed by Patrick Alfred Pierce Moran. Spatial autocorrelation is characterized by a correlation in a signal among nearby locations in space. Spatial autocorrelation is more complex than one-dimensional autocorrelation because spatial correlation is multi-dimensional (i.e. 2 or 3 dimensions of space) and multi-directional. Global Moran's ''I'' Global Moran's ''I'' is a measure of the overall clustering of the spatial data. It is defined as : I = \frac N W \frac where * N is the number of spatial units indexed by i and j; * x is the variable of interest; * \bar x is the mean of x; * w_ are the elements of a matrix of spatial weights with zeroes on the diagonal (i.e., w_ = 0); * and W is the sum of all w_ (i.e. W = \sum_^N \sum_^N ). : Defining the spatial weights matrix The value of I can depend quite a bit on the assumptions built into the spatial weights matrix w_. The matrix is required because, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Autocorrelation
Autocorrelation, sometimes known as serial correlation in the discrete time case, measures the correlation of a signal with a delayed copy of itself. Essentially, it quantifies the similarity between observations of a random variable at different points in time. The analysis of autocorrelation is a mathematical tool for identifying repeating patterns or hidden periodicities within a signal obscured by noise. Autocorrelation is widely used in signal processing, time domain and time series analysis to understand the behavior of data over time. Different fields of study define autocorrelation differently, and not all of these definitions are equivalent. In some fields, the term is used interchangeably with autocovariance. Various time series models incorporate autocorrelation, such as unit root processes, trend-stationary processes, autoregressive processes, and moving average processes. Autocorrelation of stochastic processes In statistics, the autocorrelation of a real ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Score
In statistics, the standard score or ''z''-score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured. Raw scores above the mean have positive standard scores, while those below the mean have negative standard scores. It is calculated by subtracting the population mean from an individual raw score and then dividing the difference by the Statistical population, population standard deviation. This process of converting a raw score into a standard score is called standardizing or normalizing (however, "normalizing" can refer to many types of ratios; see ''Normalization (statistics), Normalization'' for more). Standard scores are most commonly called ''z''-scores; the two terms may be used interchangeably, as they are in this article. Other equivalent terms in use include z-value, z-statistic, normal score, standardized variable and pull in high energy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transpose
In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations). The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. Transpose of a matrix Definition The transpose of a matrix , denoted by , , , A^, , , or , may be constructed by any one of the following methods: #Reflection (mathematics), Reflect over its main diagonal (which runs from top-left to bottom-right) to obtain #Write the rows of as the columns of #Write the columns of as the rows of Formally, the -th row, -th column element of is the -th row, -th column element of : :\left[\mathbf^\operatorname\right]_ = \left[\mathbf\right]_. If is an matrix, then is an matrix. In the case of square matrices, may also denote the th power of the matrix . For avoiding a possibl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mantel Test
The Mantel test, named after Nathan Mantel, is a statistical test of the correlation between two matrices. The matrices must be of the same dimension; in most applications, they are matrices of interrelations between the same vectors of objects. The test was first published by Nathan Mantel, a biostatistician at the National Institutes of Health, in 1967. Accounts of it can be found in advanced statistics books (e.g., Sokal & Rohlf 1995). Usage The test is commonly used in ecology, where the data are usually estimates of the "distance" between objects such as species of organisms. For example, one matrix might contain estimates of the genetic distances (i.e., the amount of difference between two different genomes) between all possible pairs of species in the study, obtained by the methods of molecular systematics; while the other might contain estimates of the geographical distance between the ranges of each species to every other species. In this case, the hypothesis being test ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lee's L
Lee's ''L'' is a bivariate spatial correlation coefficient which measures the association between two sets of observations made at the same spatial sites. Standard measures of association such as the Pearson correlation coefficient do not account for the spatial dimension of data, in particular they are vulnerable to inflation due to spatial autocorrelation. Lee's ''L'' is available in numerous spatial analysis software libraries including ''spdep'' and ''PySAL'' (where it is called ''Spatial_Pearson'') and has been applied in diverse applications such as studying air pollution, viticulture and housing rent. Formula For spatial data x_i and y_i measured at N locations connected with the spatial weight matrix w_ first define the spatially lagged vector :\tilde_i = \sum_j w_ x_j with a similar definition for \tilde_i. Then Lee's ''L'' is defined as : L_ = \frac \frac where \bar, \bar are the mean values of x_i, y_i. When the spatial weight matrix is row normalized, such th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spatial Analysis
Spatial analysis is any of the formal Scientific technique, techniques which study entities using their topological, geometric, or geographic properties, primarily used in Urban design, Urban Design. Spatial analysis includes a variety of techniques using different analytic approaches, especially ''spatial statistics''. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is geospatial analysis, the technique applied to structures at the human scale, most notably in the analysis of geographic data. It may also applied to genomics, as in Spatial transcriptomics, transcriptomics data, but is primarily for spatial data. Complex issues arise in spatial analysis, many of which are neither clearly defined nor completely resolved, but form the basis for current resear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]