HOME
*





Variational Analysis
In mathematics, the term variational analysis usually denotes the combination and extension of methods from convex optimization and the classical calculus of variations to a more general theory. This includes the more general problems of optimization theory, including topics in set-valued analysis, e.g. generalized derivatives. In the Mathematics Subject Classification scheme (MSC2010), the field of "Set-valued and variational analysis" is coded by "49J53". History While this area of mathematics has a long history, the first use of the term "Variational analysis" in this sense was in an eponymous book by R. Tyrrell Rockafellar and Roger J-B Wets. Existence of Minima A classical result is that a lower semicontinuous function on a compact set attains its minimum. Results from variational analysis such as Ekeland's variational principle allow us to extend this result of lower semicontinuous functions on non-compact sets provided that the function has a lower bound and at the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ekeland's Variational Principle
In mathematical analysis, Ekeland's variational principle, discovered by Ivar Ekeland, is a theorem that asserts that there exist nearly optimal solutions to some optimization problems. Ekeland's principle can be used when the lower level set of a minimization problems is not compact, so that the Bolzano–Weierstrass theorem cannot be applied. The principle relies on the completeness of the metric space. The principle has been shown to be equivalent to completeness of metric spaces. In proof theory, it is equivalent to ΠCA0 over RCA0, i.e. relatively strong. It also leads to a quick proof of the Caristi fixed point theorem. History Ekeland was associated with the Paris Dauphine University when he proposed this theorem. Ekeland's variational principle Preliminary definitions A function f : X \to \R \cup \ valued in the extended real numbers \R \cup \ = \infty, +\infty/math> is said to be if \inf_ f(X) = \inf_ f(x) > -\infty and it is called if it has a non-empty , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clarke Generalized Gradient
Clarke is a surname which means "clerk". The surname is of English and Irish origin and comes from the Latin . Variants include Clerk and Clark. Clarke is also uncommonly chosen as a given name. Irish surname origin Clarke is a popular surname in Ireland. The Irish version of the surname is believed to have come from County Galway and County Antrim and spread to County Donegal and County Dublin. The name is derived from the Irish Gaelic sept , meaning "clerk". English surname origin Clarke, as well as Clark, is also a widespread surname in England. The English version is of Anglo-Saxon origin and was used in the Middle Ages for the name of a scribe or secretary. The word "clerc", which came from the pre-7th century Old English (meaning priest), originally denoted a member of a religious order, but later became widespread. In the Middle Ages, virtually the only people who could read and write were members of religious orders, linking the word with literacy. Thus the surname beca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subderivative
In mathematics, the subderivative, subgradient, and subdifferential generalize the derivative to convex functions which are not necessarily differentiable. Subderivatives arise in convex analysis, the study of convex functions, often in connection to convex optimization. Let f:I \to \mathbb be a real-valued convex function defined on an open interval of the real line. Such a function need not be differentiable at all points: For example, the absolute value function ''f''(''x'')=, ''x'', is nondifferentiable when ''x''=0. However, as seen in the graph on the right (where ''f(x)'' in blue has non-differentiable kinks similar to the absolute value function), for any ''x''0 in the domain of the function one can draw a line which goes through the point (''x''0, ''f''(''x''0)) and which is everywhere either touching or below the graph of ''f''. The slope of such a line is called a ''subderivative'' (because the line is under the graph of ''f''). Definition Rigorously, a ''subderiva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Function
In mathematics, a real-valued function is called convex if the line segment between any two points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. Well-known examples of convex functions of a single variable include the quadratic function x^2 and the exponential function e^x. In simple terms, a convex function refers to a function whose graph is shaped like a cup \cup, while a concave function's graph is shaped like a cap \cap. Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an open set has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrange Multiplier
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). It is named after the mathematician Joseph-Louis Lagrange. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function. The method can be summarized as follows: in order to find the maximum or minimum of a function f(x) subjected to the equality constraint g(x) = 0, form the Lagrangian function :\mathcal(x, \lambda) = f(x) + \lambda g(x) and find the stationary points of \mathcal considered as a function of x and the Lagrange m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Function
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or C^ function). Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an open set U on the real line and a function f defined on U with real values. Let ''k'' be a non-negative integer. The function f is said to be of differentiability class ''C^k'' if the derivatives f',f'',\dots,f^ exist and are continuous on U. If f is k-dif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fermat's Theorem (stationary Points)
In mathematics, Fermat's theorem (also known as interior extremum theorem) is a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function's derivative is zero at that point). Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat. By using Fermat's theorem, the potential extrema of a function \displaystyle f, with derivative \displaystyle f', are found by solving an equation in \displaystyle f'. Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum. Statement One way to state Fermat's theorem is that, if a function has a local extremum at some point and is differentiable there, then the function's derivative at th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Optimization
Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard. Convex optimization has applications in a wide range of disciplines, such as automatic control systems, estimation and signal processing, communications and networks, electronic circuit design, data analysis and modeling, finance, statistics ( optimal experimental design), and structural optimization, where the approximation concept has proven to be efficient. With recent advancements in computing and optimization algorithms, convex programming is nearly as straightforward as linear programming. Definition A convex optimization problem is an optimization problem in which the objective function is a convex function and the feasibl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lower Semicontinuous
In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f is upper (respectively, lower) semicontinuous at a point x_0 if, roughly speaking, the function values for arguments near x_0 are not much higher (respectively, lower) than f\left(x_0\right). A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x_0 to f\left(x_0\right) + c for some c>0, then the result is upper semicontinuous; if we decrease its value to f\left(x_0\right) - c then the result is lower semicontinuous. The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899. Definitions Assume throughout that X is a topological space and f:X\to\overline is a function with values in the extended real numbers \overline=\R \cup \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]