Variation Of Parameters
In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous differential equation, inhomogeneous linear ordinary differential equations. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or method of undetermined coefficients, undetermined coefficients with considerably less effort, although those methods leverage heuristics that involve guessing and do not work for all inhomogeneous linear differential equations. Variation of parameters extends to linear partial differential equations as well, specifically to inhomogeneous problems for linear evolution equations like the heat equation, wave equation, and vibrating plate equation. In this setting, the method is more often known as Duhamel's principle, named after Jean-Marie Duhamel (1797–1872) who first applied the method to solve the inhomogeneous heat equation. Sometimes variation of parame ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
McGraw-Hill
McGraw Hill is an American education science company that provides educational content, software, and services for students and educators across various levels—from K-12 to higher education and professional settings. They produce textbooks, digital learning tools, and adaptive technology to enhance learning experiences and outcomes. It is one of the "big three" educational publishers along with Houghton Mifflin Harcourt and Pearson Education. McGraw Hill also publishes reference and trade publications for the medical, business, and engineering professions. Formerly a division of The McGraw Hill Companies (later renamed McGraw Hill Financial, now S&P Global), McGraw Hill Education was divested and acquired by Apollo Global Management in March 2013 for $2.4 billion in cash. McGraw Hill was sold in 2021 to Platinum Equity for $4.5 billion. History McGraw Hill was founded in 1888, when James H. McGraw, co-founder of McGraw Hill, purchased the ''American Journal of Railway ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reduction Of Order
Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y_1(x) is known and a second linearly independent solution y_2(x) is desired. The method also applies to ''n''-th order equations. In this case the ansatz will yield an (''n''−1)-th order equation for v. Second-order linear ordinary differential equations An example Consider the general, homogeneous, second-order linear constant coefficient ordinary differential equation. (ODE) a y''(x) + b y'(x) + c y(x) = 0, where a, b, c are real non-zero coefficients. Two linearly independent solutions for this ODE can be straightforwardly found using characteristic equations except for the case when the discriminant, b^2 - 4 a c, vanishes. In this case, a y''(x) + b y'(x) + \frac y(x) = 0, from which only one solution, y_1(x) = e^, can be found using its characteristic equation. The method of reduction of orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alekseev–Gröbner Formula
The Alekseev–Gröbner formula, or nonlinear variation-of-constants formula, is a generalization of the linear variation of constants formula which was proven independently by Wolfgang Gröbner in 1960 and Vladimir Mikhailovich Alekseev in 1961. It expresses the global error of a perturbation in terms of the local error and has many applications for studying perturbations of ordinary differential equations. Formulation Let d \in \mathbb N be a natural number, let T \in (0, \infty) be a positive real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ..., and let \mu \colon , T\times \mathbb^ \to \mathbb^ \in C^( , T\times \mathbb^) be a function which is continuous on the time interval , T/math> and continuously differentiable on the d-dimensional space \mathbb^. Let X \c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constant Of Integration
In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives. More specifically, if a function f(x) is defined on an interval, and F(x) is an antiderivative of f(x), then the set of ''all'' antiderivatives of f(x) is given by the functions F(x) + C, where C is an arbitrary constant (meaning that ''any'' value of C would make F(x) + C a valid antiderivative). For that reason, the indefinite integral is often written as \int f(x) \, dx = F(x) + C, although the constant of integration might be sometimes omitted in lists of integrals for simplicity. Origin The derivative of any constant function is zero. Once one has found one antiderivative F(x) for a function f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative. Definition Given a nonnegative integer ''m'', an order-m linear differential operator is a map P from a function space \mathcal_1 on \mathbb^n to another function space \mathcal_2 that can be written as: P = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multi-index of non-negative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''-dimensional space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wronskian
In mathematics, the Wronskian of ''n'' differentiable functions is the determinant formed with the functions and their derivatives up to order . It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions. Definition The Wrońskian of two differentiable functions and is W(f,g)=f g' - g f' . More generally, for real- or complex-valued functions , which are times differentiable on an interval , the Wronskian W(f_1,\ldots,f_n) is a function on x\in I defined by W(f_1, \ldots, f_n) (x)= \det \begin f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n' (x)\\ \vdots & \vdots & \ddots & \vdots \\ f_1^(x)& f_2^(x) & \cdots & f_n^(x) \end. This is the determinant of the matrix constructed by placing the functions in the first row, the first derivatives of the functions in the second row, and so on through the (n-1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Characteristic Equation (calculus)
In mathematics, the characteristic equation (or auxiliary equation) is an algebraic equation of degree upon which depends the solution of a given th- order differential equation or difference equation. The characteristic equation can only be formed when the differential equation is linear and homogeneous, and has constant coefficients. Such a differential equation, with as the dependent variable, superscript denoting ''n''th-derivative, and as constants, :a_y^ + a_y^ + \cdots + a_y' + a_y = 0, will have a characteristic equation of the form :a_r^ + a_r^ + \cdots + a_r + a_ = 0 whose solutions are the roots from which the general solution can be formed. Analogously, a linear difference equation of the form :y_ = b_1y_ + \cdots + b_ny_ has characteristic equation :r^n - b_1r^ - \cdots - b_n =0, discussed in more detail at Linear recurrence with constant coefficients. The characteristic roots (roots of the characteristic equation) also provide qualitative information abo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separation Of Variables
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary differential equation, ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation. Ordinary differential equations (ODE) A differential equation for the unknown f(x) is separable if it can be written in the form :\frac f(x) = g(x)h(f(x)) where g and h are given functions. This is perhaps more transparent when written using y = f(x) as: :\frac=g(x)h(y). So now as long as ''h''(''y'') ≠ 0, we can rearrange terms to obtain: : = g(x) \, dx, where the two variables ''x'' and ''y'' have been separated. Note ''dx'' (and ''dy'') can be viewed, at a simple level, as just a convenient notation, which provides a handy mnemonic aid for assisting with manipulations. A formal definition of ''dx'' as a differential (infinitesimal) is somewhat advanced. Al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leibniz Integral Rule
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form \int_^ f(x,t)\,dt, where -\infty < a(x), b(x) < \infty and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative. In the special case where the functions and |
|
Impulse (physics)
In classical mechanics, impulse (symbolized by or Imp) is the change in momentum of an object. If the initial momentum of an object is , and a subsequent momentum is , the object has received an impulse : \mathbf=\mathbf_2 - \mathbf_1. Momentum is a Vector (physics), vector quantity, so impulse is also a vector quantity: \sum \mathbf \times \Delta t = \Delta \mathbf. Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force acting on the object: \mathbf=\frac, so the impulse delivered by a steady force acting for time is: \mathbf=\mathbf \Delta t. The impulse delivered by a varying force acting from time to is the integral of the force with respect to time: \mathbf= \int_a^b\mathbf \, \mathrmt. The International System of Units, SI unit of impulse is the newton second (N⋅s), and the dimensional analysis, dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The correspond ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |