HOME
*





Unitary Perfect Number
A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself (a divisor ''d'' of a number ''n'' is a unitary divisor if ''d'' and ''n''/''d'' share no common factors). Some perfect numbers are not unitary perfect numbers, and some unitary perfect numbers are not ordinary perfect numbers. Known examples The number 60 is a unitary perfect number, because 1, 3, 4, 5, 12, 15, and 20 are its proper unitary divisors, and 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60. The first five, and only known, unitary perfect numbers are 6 = 2 \times 3, 60 = 2^2 \times 3 \times 5, 90 = 2 \times 3^2 \times 5, 87360 = 2^6 \times 3 \times 5 \times 7 \times 13, and 146361946186458562560000 = 2^ \times 3 \times 5^4 \times 7 \times 11 \times 13 \times 19 \times 37 \times 79 \times 109 \times 157 \times 313 . The respective sums of their proper unitary divisors are as follows: * 6 = 1 + 2 + 3 * 60 = 1 + 3 + 4 + 5 + 12 + 15 + 20 * 90 = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proper Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero. General Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unitary Divisor
In mathematics, a natural number ''a'' is a unitary divisor (or Hall divisor) of a number ''b'' if ''a'' is a divisor of ''b'' and if ''a'' and \frac are coprime, having no common factor other than 1. Thus, 5 is a unitary divisor of 60, because 5 and \frac=12 have only 1 as a common factor, while 6 is a divisor but not a unitary divisor of 60, as 6 and \frac=10 have a common factor other than 1, namely 2. 1 is a unitary divisor of every natural number. Equivalently, a divisor ''a'' of ''b'' is a unitary divisor if and only if every prime factor of ''a'' has the same multiplicity in ''a'' as it has in ''b''. The sum-of-unitary-divisors function is denoted by the lowercase Greek letter sigma thus: σ*(''n''). The sum of the ''k''-th powers of the unitary divisors is denoted by σ*''k''(''n''): :\sigma_k^*(n) = \sum_ \!\! d^k. If the proper unitary divisors of a given number add up to that number, then that number is called a unitary perfect number. Properties The number of unit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero. General Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. The sum of divisors of a number, excluding the number itself, is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors including itself; in symbols, \sigma_1(n)=2n where \sigma_1 is the sum-of-divisors function. For instance, 28 is perfect as 1 + 2 + 4 + 7 + 14 = 28. This definition is ancient, appearing as early as Euclid's ''Elements'' (VII.22) where it is called (''perfect'', ''ideal'', or ''complete number''). Euclid also proved a formation rule (IX.36) whereby q(q+1)/2 is an even perfect number whenever q is a prime of the form 2^p-1 for positive integer p—what is now called a Mersenne prime. Two millen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

60 (number)
60 (sixty) () is the natural number following 59 and preceding 61. Being three times 20, it is called '' threescore'' in older literature ('' kopa'' in Slavic, ''Schock'' in Germanic). In mathematics * 60 is a highly composite number. Because it is the sum of its unitary divisors (excluding itself), it is a unitary perfect number, and it is an abundant number with an abundance of 48. Being ten times a perfect number, it is a semiperfect number. * It is the smallest number divisible by the numbers 1 to 6: there is no smaller number divisible by the numbers 1 to 5. * It is the smallest number with exactly 12 divisors. * It is one of seven integers that have more divisors than any number less than twice itself , one of six that are also lowest common multiple of a consecutive set of integers from 1, and one of six that are divisors of every highly composite number higher than itself. * It is the smallest number that is the sum of two odd primes in six ways.Wells, D. ''The Penguin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

6 (number)
6 (six) is the natural number following 5 and preceding 7. It is a composite number and the smallest perfect number. In mathematics Six is the smallest positive integer which is neither a square number nor a prime number; it is the second smallest composite number, behind 4; its proper divisors are , and . Since 6 equals the sum of its proper divisors, it is a perfect number; 6 is the smallest of the perfect numbers. It is also the smallest Granville number, or \mathcal-perfect number. As a perfect number: *6 is related to the Mersenne prime 3, since . (The next perfect number is 28.) *6 is the only even perfect number that is not the sum of successive odd cubes. *6 is the root of the 6-aliquot tree, and is itself the aliquot sum of only one other number; the square number, . Six is the only number that is both the sum and the product of three consecutive positive numbers. Unrelated to 6's being a perfect number, a Golomb ruler of length 6 is a "perfect ruler". Six is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


90 (number)
90 (ninety) is the natural number preceded by 89 and followed by 91. In the English language, the numbers 90 and 19 are often confused, as they sound very similar. When carefully enunciated, they differ in which syllable is stressed: 19 /naɪnˈtiːn/ vs 90 /ˈnaɪnti/. However, in dates such as 1999, and when contrasting numbers in the teens and when counting, such as 17, 18, 19, the stress shifts to the first syllable: 19 /ˈnaɪntiːn/. In mathematics 90 is a pronic number, as it is the product of 9 and 10. It is nontotient, and divisible by the sum of its base 10 digits, which makes it a Harshad number. *It is the third unitary perfect number, since it is the sum of its unitary divisors excluding itself, and because it is equal to the sum of a subset of its divisors, it is also a semiperfect number. *90 is a Stirling number of the second kind S(n,k) from a n of 6 and a k of 3, as it is the number of ways of dividing a set of six objects into three non empty subsets. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which alway ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Function
In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime. An arithmetic function ''f''(''n'') is said to be completely multiplicative (or totally multiplicative) if ''f''(1) = 1 and ''f''(''ab'') = ''f''(''a'')''f''(''b'') holds ''for all'' positive integers ''a'' and ''b'', even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(''n''): the constant function, defined by 1(''n'') = 1 (completely multiplicative) * Id(''n''): identity function, defined by Id(''n'') = ''n'' (completely multiplicative) * Id''k''(''n''): the power functions, defined by Id''k''(''n'') = ''n''''k'' for any complex number ''k'' (completely multiplicative). As special cases we have ** Id0(''n'') = 1(''n'') and ** Id1(''n'') = Id(''n''). * ''ε''(''n''): the function defined by ''ε''(''n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (i.e. the group of units of the ring Z/''p''''n''Z) i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]