Telescoping Series
   HOME
*



picture info

Telescoping Series
In mathematics, a telescoping series is a series whose general term t_n can be written as t_n=a_n-a_, i.e. the difference of two consecutive terms of a sequence (a_n). As a consequence the partial sums only consists of two terms of (a_n) after cancellation. The cancellation technique, with part of each term cancelling with part of the next term, is known as the method of differences. For example, the series :\sum_^\infty\frac (the series of reciprocals of pronic numbers) simplifies as :\begin \sum_^\infty \frac & = \sum_^\infty \left( \frac - \frac \right) \\ & = \lim_ \sum_^N \left( \frac - \frac \right) \\ & = \lim_ \left\lbrack \right\rbrack \\ & = \lim_ \left\lbrack \right\rbrack \\ & = \lim_ \left\lbrack \right\rbrack = 1. \end An early statement of the formula for the sum or partial sums of a telescoping series can be found in a 1644 work by Evangelista Torricelli, ''De dimensione parabolae''. In general Telescoping sums are finite sums in which pair ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Memorylessness
In probability and statistics, memorylessness is a property of certain probability distributions. It usually refers to the cases when the distribution of a "waiting time" until a certain event does not depend on how much time has elapsed already. To model memoryless situations accurately, we must constantly 'forget' which state the system is in: the probabilities would not be influenced by the history of the process. Only two kinds of distributions are memoryless: geometric distributions of non-negative integers and the exponential distributions of non-negative real numbers. In the context of Markov processes, memorylessness refers to the Markov property, an even stronger assumption which implies that the properties of random variables related to the future depend only on relevant information about the current time, not on information from further in the past. The present article describes the use outside the Markov property. Waiting time examples With memory Most phenomena are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eilenberg–Mazur Swindle
In mathematics, the Eilenberg–Mazur swindle, named after Samuel Eilenberg and Barry Mazur, is a method of proof that involves paradoxical properties of infinite sums. In geometric topology it was introduced by and is often called the Mazur swindle. In algebra it was introduced by Samuel Eilenberg and is known as the Eilenberg swindle or Eilenberg telescope (see telescoping sum). The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0: : 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 This "proof" is not valid as a claim about real numbers because Grandi's series 1 − 1 + 1 − 1 + ... does not converge, but the analogous argument can be u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology Theory
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space. Homology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lefschetz Fixed-point Theorem
In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X. It is named after Solomon Lefschetz, who first stated it in 1926. The counting is subject to an imputed multiplicity at a fixed point called the fixed-point index. A weak version of the theorem is enough to show that a mapping without ''any'' fixed point must have rather special topological properties (like a rotation of a circle). Formal statement For a formal statement of the theorem, let :f\colon X \rightarrow X\, be a continuous map from a compact triangulable space X to itself. Define the Lefschetz number \Lambda_f of f by :\Lambda_f:=\sum_(-1)^k\mathrm(f_*, H_k(X,\Q)), the alternating (finite) sum of the matrix traces of the linear maps induced by f on H_k(X,\Q), the singular homology groups of X with rational coefficients. A simple ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Statistic
In statistics, the ''k''th order statistic of a statistical sample is equal to its ''k''th-smallest value. Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference. Important special cases of the order statistics are the minimum and maximum value of a sample, and (with some qualifications discussed below) the sample median and other sample quantiles. When using probability theory to analyze order statistics of random samples from a continuous distribution, the cumulative distribution function is used to reduce the analysis to the case of order statistics of the uniform distribution. Notation and examples For example, suppose that four numbers are observed or recorded, resulting in a sample of size 4. If the sample values are :6, 9, 3, 8, the order statistics would be denoted :x_=3,\ \ x_=6,\ \ x_=8,\ \ x_=9,\, where the subscript enclosed in parentheses indicates the th order statistic of the sampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem Of Calculus
The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). The two operations are inverses of each other apart from a constant value which depends on where one starts to compute area. The first part of the theorem, the first fundamental theorem of calculus, states that for a function , an antiderivative or indefinite integral may be obtained as the integral of over an interval with a variable upper bound. This implies the existence of antiderivatives for continuous functions. Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function over a fixed interval is equal to the change of any antiderivative between the ends of the interval. This greatly simplifies the calculation of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proof That The Sum Of The Reciprocals Of The Primes Diverges
The sum of the reciprocals of all prime numbers diverges; that is: \sum_\frac1p = \frac12 + \frac13 + \frac15 + \frac17 + \frac1 + \frac1 + \frac1 + \cdots = \infty This was proved by Leonhard Euler in 1737, and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series). There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that \sum_\frac1p \ge \log \log (n+1) - \log\frac6 for all natural numbers . The double natural logarithm () indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant. The harmonic series First, we describe how Euler originally discovered the result. He was considering the harmonic series \sum_^\infty \frac = 1 + \frac + \frac + \frac + \cdots = \infty He had already used the following " product formula" to s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grandi's Series
In mathematics, the infinite series , also written : \sum_^\infty (-1)^n is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that it lacks a sum in the usual sense. On the other hand, its Cesàro sum is 1/2. Unrigorous methods One obvious method to attack the series :1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + ... is to treat it like a telescoping series and perform the subtractions in place: :(1 − 1) + (1 − 1) + (1 − 1) + ... = 0 + 0 + 0 + ... = 0. On the other hand, a similar bracketing procedure leads to the apparently contradictory result :1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + ... = 1 + 0 + 0 + 0 + ... = 1. Thus, by applying parentheses to Grandi's series in different ways, one can obtain either 0 or 1 as a "value". (Variations of this idea, called the Eilenberg–Mazur swindle, are sometimes used in knot theory and algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Probability Mass Function
In probability and statistics, a probability mass function is a function that gives the probability that a discrete random variable is exactly equal to some value. Sometimes it is also known as the discrete density function. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables whose domain is discrete. A probability mass function differs from a probability density function (PDF) in that the latter is associated with continuous rather than discrete random variables. A PDF must be integrated over an interval to yield a probability. The value of the random variable having the largest probability mass is called the mode. Formal definition Probability mass function is the probability distribution of a discrete random variable, and provides the possible values and their associated probabilities. It is the function p: \R \to ,1/math> defined by for -\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H and tails T) in a sample space (e.g., the set \) to a measurable space, often the real numbers (e.g., \ in which 1 corresponding to H and -1 corresponding to T). Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory, a random ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]