HOME





Total Relation
In mathematics, a binary relation ''R'' ⊆ ''X''×''Y'' between two sets ''X'' and ''Y'' is total (or left total) if the source set ''X'' equals the domain . Conversely, ''R'' is called right total if ''Y'' equals the range . When ''f'': ''X'' → ''Y'' is a function, the domain of ''f'' is all of ''X'', hence ''f'' is a total relation. On the other hand, if ''f'' is a partial function, then the domain may be a proper subset of ''X'', in which case ''f'' is not a total relation. "A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."Functions
from

picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs (x, y), where x is an element of X and y is an element of Y. It encodes the common concept of relation: an element x is ''related'' to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime p is related to each integer z that is a Divisibility, multiple of p, but not to an integer that is not a Multiple (mathematics), multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as -4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13. Binary relations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain of . If equals , that is, if is defined on every element in , then is said to be a total function. In other words, a partial function is a binary relation over two sets that associates to every element of the first set ''at most'' one element of the second set; it is thus a univalent relation. This generalizes the concept of a (total) function by not requiring ''every'' element of the first set to be associated to an element of the second set. A partial function is often used when its exact domain of definition is not known, or is difficult to specify. However, even when the exact domain of definition is known, partial functions are often used for simplicity or brevity. This is the case in calculus, where, for example, the quotien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carnegie Mellon University
Carnegie Mellon University (CMU) is a private research university in Pittsburgh, Pennsylvania, United States. The institution was established in 1900 by Andrew Carnegie as the Carnegie Technical Schools. In 1912, it became the Carnegie Institute of Technology and began granting four-year degrees. In 1967, it became Carnegie Mellon University through its merger with the Mellon Institute of Industrial Research, founded in 1913 by Andrew Mellon and Richard B. Mellon and formerly a part of the University of Pittsburgh. The university consists of seven colleges, including the College of Engineering, the School of Computer Science, and the Tepper School of Business. The university has its main campus located 5 miles (8 km) from downtown Pittsburgh. It also has over a dozen degree-granting locations in six continents, including campuses in Qatar, Silicon Valley, and Kigali, Rwanda ( Carnegie Mellon University Africa) and partnerships with universities nationally and glob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Composition Of Relations
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation from two given binary relations ''R'' and ''S''. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent. In algebraic logic it is said that the relation of Uncle (x U z) is the composition of relations "is a brother of" (x B y) and "is a parent of" (y P z). U = BP \quad \text \quad xUz \text \exists y\ xByPz. Beginning with Augustus De Morgan, the traditional form of reasoning by syllogism has been subsumed by relational logical expressions and their composition. Definition If R \subseteq X \times Y and S \subseteq Y \times Z are two binary relations, then their compo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Relation
In mathematics, a homogeneous relation (also called endorelation) on a set ''X'' is a binary relation between ''X'' and itself, i.e. it is a subset of the Cartesian product . This is commonly phrased as "a relation on ''X''" or "a (binary) relation over ''X''". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations. Terminology particular for graph theory is used for description, with an ordinary (undirected) graph presumed to correspond to a symmetric relation, and a general endorelation corresponding to a directed graph. An endorelation ''R'' corresponds to a logical matrix of 0s and 1s, where the expression ''xRy'' (''x'' is ''R''-related to ''y'') corresponds to an edge between ''x'' and ''y'' in the graph, and to a 1 in the square matrix of ''R''. It is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Converse Relation
In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if X and Y are sets and L \subseteq X \times Y is a relation from X to Y, then L^ is the relation defined so that yL^x if and only if xLy. In set-builder notation, :L^ = \. Since a relation may be represented by a logical matrix, and the logical matrix of the converse relation is the transpose of the original, the converse relation is also called the transpose relation. It has also been called the opposite or dual of the original relation, the inverse of the original relation,Gerard O'Regan (2016): ''Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications'' or the reciprocal L^ of the relation L. Other notations for the converse relation include L^, L^, \breve, L^, or L^. The notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer Science & Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Serial Relation
In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in ''The Principles of Mathematics'' (1903) as he explored the foundations of order theory and its applications. The term ''serial relation'' was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. A serial relation ''R'' is an endorelation on a set ''U''. As stated by Russell, \forall x \exists y \ xRy , where the universal and existential quantifiers refer to ''U''. In contemporary language of relations, this property defines a total relation. But a total relation may be heterogeneous. Serial relations are of historic interest. For a relation ''R'', let denote the "successor neigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]