Tau Ceti F
Tau Ceti f is a super-Earth or mini-Neptune orbiting Tau Ceti that was discovered in 2012 by statistical analyses of the star's variations in radial velocity, based on data obtained using HIRES, AAPS, and HARPS. It is of interest because its orbit places it in Tau Ceti's extended habitable zone, but a 2015 study implies that there may not be a detectable biosignature because it has only been in the temperate zone for less than one billion years. Characteristics Few properties of the planet are known other than its orbit and mass. It orbits Tau Ceti at a distance of 1.35 AU (roughly Mars's perihelion in the Solar System) with an orbital period of 642 days, and has a minimum mass of 3.93 Earth masses. However, if it and its companion planets were similarly inclined to Tau Ceti's debris disk at °, f could and Earth masses, which means it's slightly more likely to be a mini-Neptune, although the exoplanet is included in the conservative sample of potentially habitable exoplanet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tau Ceti
Tau Ceti, Latinized from τ Ceti, is a single star in the constellation Cetus that is spectrally similar to the Sun, although it has only about 78% of the Sun's mass. At a distance of just under from the Solar System, it is a relatively nearby star and the closest solitary G-class star. The star appears stable, with little stellar variation, and is metal-deficient relative to the Sun. It can be seen with the unaided eye with an apparent magnitude of 3.5. As seen from Tau Ceti, the Sun would be in the northern hemisphere constellation Boötes with an apparent magnitude of about 2.6.From Tau Ceti the Sun would appear on the diametrically opposite side of the sky at the coordinates RA = , Dec = , which is located near Tau Boötis. The absolute magnitude of the Sun is 4.8, so, at a distance of , the Sun would have an apparent magnitude m = M_v + 5 \cdot (\log_ 3.64 - 1) = 2.6. Observations have detected more than ten times as much dust surround ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Doppler Spectroscopy
Doppler spectroscopy (also known as the radial-velocity method, or colloquially, the wobble method) is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. 1,018 extrasolar planets (about 19.5% of the total) have been discovered using Doppler spectroscopy, as of November 2022. History Otto Struve proposed in 1952 the use of powerful spectrographs to detect distant planets. He described how a very large planet, as large as Jupiter, for example, would cause its parent star to wobble slightly as the two objects orbit around their center of mass. He predicted that the small Doppler shifts to the light emitted by the star, caused by its continuously varying radial velocity, would be detectable by the most sensitive spectrographs as tiny redshifts and blueshifts in the star's emission. However, the technology of the time produced radial-velocity me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astronomical Unit
The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits the Sun, from a maximum ( aphelion) to a minimum ( perihelion) and back again once each year. The astronomical unit was originally conceived as the average of Earth's aphelion and perihelion; however, since 2012 it has been defined as exactly (see below for several conversions). The astronomical unit is used primarily for measuring distances within the Solar System or around other stars. It is also a fundamental component in the definition of another unit of astronomical length, the parsec. History of symbol usage A variety of unit symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union (IAU) had used the symbol ''A'' to denote a length equal to the ast ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Year
A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked. A calendar year is an approximation of the number of days of the Earth's orbital period, as counted in a given calendar. The Gregorian calendar, or modern calendar, presents its calendar year to be either a common year of 365 days or a leap year of 366 days, as do the Julian calendars. For the Gregorian calendar, the average length of the calendar yea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tau Ceti
Tau Ceti, Latinized from τ Ceti, is a single star in the constellation Cetus that is spectrally similar to the Sun, although it has only about 78% of the Sun's mass. At a distance of just under from the Solar System, it is a relatively nearby star and the closest solitary G-class star. The star appears stable, with little stellar variation, and is metal-deficient relative to the Sun. It can be seen with the unaided eye with an apparent magnitude of 3.5. As seen from Tau Ceti, the Sun would be in the northern hemisphere constellation Boötes with an apparent magnitude of about 2.6.From Tau Ceti the Sun would appear on the diametrically opposite side of the sky at the coordinates RA = , Dec = , which is located near Tau Boötis. The absolute magnitude of the Sun is 4.8, so, at a distance of , the Sun would have an apparent magnitude m = M_v + 5 \cdot (\log_ 3.64 - 1) = 2.6. Observations have detected more than ten times as much dust surround ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Earth Mass
An Earth mass (denoted as M_\mathrm or M_\oplus, where ⊕ is the standard astronomical symbol for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is , with a relative uncertainty of 10−4.The cited value is the recommended value published by the International Astronomical Union in 2009 (se2016 "Selected Astronomical Constants"in ). It is equivalent to an average density of . Using the nearest metric prefix, the Earth mass is approximately six ronnagrams, or 6.0 Rg. The Earth mass is a standard unit of mass in astronomy that is used to indicate the masses of other planets, including rocky terrestrial planets and exoplanets. One Solar mass is close to Earth masses. The Earth mass excludes the mass of the Moon. The mass of the Moon is about 1.2% of that of the Earth, so that the mass of the Earth+Moon system is close to . Most of the mass is accounted for by iron and oxygen (c. 32% each), magnesium and sili ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Super-Earth
A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although " mini-Neptunes" is a more common term. Definition In general, super-Earths are defined by their masses, and the term does not imply temperatures, compositions, orbital properties, habitability, or environments. While sources generally agree on an upper bound of 10 Earth masses (~69% of the mass of Uranus, which is the Solar System's giant planet with the least mass), the lower bound varies from 1 or 1.9 to 5, with various other definitions appearing in the popular media. The term "super-Earth" is also used by astronomers t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mini-Neptune
A Mini-Neptune (sometimes known as a gas dwarf or transitional planet) is a planet less massive than Neptune but resembling Neptune in that it has a thick hydrogen–helium atmosphere, probably with deep layers of ice, rock or liquid oceans (made of water, ammonia, a mixture of both, or heavier volatiles). A gas dwarf is a gas planet with a rocky core that has accumulated a thick envelope of hydrogen, helium, and other volatiles, having, as a result, a total radius between 1.7 and 3.9 Earth radii (). The term is used in a three-tier, metallicity-based classification regime for short-period exoplanets, which also includes the rocky, terrestrial-like planets with less than and planets greater than , namely ice giants and gas giants. Properties Theoretical studies of such planets are loosely based on knowledge about Uranus and Neptune. Without a thick atmosphere, it would be classified as an ocean planet instead. An estimated dividing line between a rocky planet and a gaseou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anglo-Australian Planet Search
The Anglo Australian Planet Search or (AAPS) is a long-term astronomical survey started in 1998 and continuing to the present. It is being carried out on the 3.9-metre Anglo-Australian Telescope (AAT) of the Anglo-Australian Observatory in Australia. The purpose of this survey is to catalog planets around more than 240 nearby stars of the southern hemisphere. For its observations, the AAT uses the ''University College London Echelle Spectrograph'', UCLES, an echelle spectrograph from the University College London located at the telescope's coudé focus. This survey uses the radial velocity method to search for extrasolar planets. The survey eventually switched its main focus to detecting long-period Jupiter analogs.The Anglo-Australian Planet Search. XXIII. Two New Jupiter Analogs Robert A. Witten ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biosignature
A biosignature (sometimes called chemical fossil or molecular fossil) is any substance – such as an element, isotope, or molecule – or phenomenon that provides scientific evidence of past or present life. Measurable attributes of life include its complex physical or chemical structures and its use of free energy and the production of biomass and wastes. A biosignature can provide evidence for living organisms outside the Earth and can be directly or indirectly detected by searching for their unique byproducts. Types In general, biosignatures can be grouped into ten broad categories:NASA Astrobiology Strategy 2015 .(PDF), NASA # Isotope ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mars
Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin atmosphere (less than 1% that of Earth's), and has a crust primarily composed of elements similar to Earth's crust, as well as a core made of iron and nickel. Mars has surface features such as impact craters, valleys, dunes and polar ice caps. It has two small and irregularly shaped moons, Phobos and Deimos. Some of the most notable surface features on Mars include Olympus Mons, the largest volcano and highest known mountain in the Solar System and Valles Marineris, one of the largest canyons in the Solar System. The Borealis basin in the Northern Hemisphere covers approximately 40% of the planet and may be a large impact feature. Days and seasons on Mars are comparable to those of Earth, as the planets have a similar rotation period a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tau Ceti E
Tau Ceti e, also called 52 Ceti e, is an exoplanet orbiting Tau Ceti that was detected by statistical analyses of the data of the star's variations in radial velocity that were obtained using HIRES, AAPS and HARPS. Its possible properties were refined in 2017: it orbits at a distance of (between the orbits of Venus and Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ... in the Solar System) with an orbital period of 168 days and has a minimum mass of 3.93 Earth masses. If Tau Ceti e possesses an Earth-like atmosphere, the surface temperature would be around . Based upon the incident flux upon the planet, a study by Güdel et al. (2014) speculated that the planet may lie inside the inner-boundary of the habitable zone and closer to a Venus-like world. References ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |