TDM-to-packet Conversion
   HOME





TDM-to-packet Conversion
TDM-to-packet conversion is the process of converting a digital signal in TDM format (typically a 64 Kbit/second signal encoded with mu-law or A-law compression) into packets (typically RTP packets) for carrying over a packet network such as the Internet. The conversion process may include recoding with a different codec, silence suppression, comfort noise generation and other tricks that can decrease the bandwidth requirement or improve the perceived voice quality of the result. Note that this is a conversion of the signal, not a tunnelling, unlike TDM over IP, which aims at transporting a TDM signal unchanged across an IP network. See also * Voice over IP Voice over Internet Protocol (VoIP), also known as IP telephony, is a set of technologies used primarily for voice communication sessions over Internet Protocol (IP) networks, such as the Internet. VoIP enables voice calls to be transmitted as ... References Multiplexing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Μ-law Algorithm
The μ-law algorithm (sometimes written mu-law, often abbreviated as u-law) is a companding algorithm, primarily used in 8-bit PCM digital telecommunications systems in North America and Japan. It is one of the two companding algorithms in the G.711 standard from ITU-T, the other being the similar A-law. A-law is used in regions where digital telecommunication signals are carried on E-1 circuits, e.g. Europe. The terms PCMU, G711u or G711MU are used for G711 μ-law. Companding algorithms reduce the dynamic range of an audio signal. In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission; in the digital domain, it can reduce the quantization error (hence increasing the signal-to-quantization-noise ratio). These SNR increases can be traded instead for reduced bandwidth for equivalent SNR. At the cost of a reduced peak SNR, it can be mathematically shown that μ-law's non-linear quantization effectively increases dynamic range by 33& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


A-law
An A-law algorithm is a standard companding algorithm, used in European 8-bit PCM digital communications systems to optimize, i.e. modify, the dynamic range of an analog signal for digitizing. It is one of the two companding algorithms in the G.711 standard from ITU-T, the other being the similar μ-law, used in North America and Japan. For a given input x, the equation for A-law encoding is as follows: F(x) = \sgn(x) \begin \dfrac, & , x, < \dfrac, \\ ex \dfrac, & \dfrac \leq , x, \leq 1, \end where A is the compression parameter. In Europe, A = 87.6. A-law expansion is given by the inverse function: F^(y) = \sgn(y) \begin \dfrac, & , y, < \dfrac, \\ \dfrac, & \dfrac \leq , y, < 1. \end The reason for this encoding is that the wide

Real-time Transport Protocol
The Real-time Transport Protocol (RTP) is a network protocol for delivering audio and video over IP networks. RTP is used in communication and entertainment systems that involve streaming media, such as telephony, video teleconference applications including WebRTC, television services and web-based push-to-talk features. RTP typically runs over User Datagram Protocol (UDP). RTP is used in conjunction with the RTP Control Protocol (RTCP). While RTP carries the media streams (e.g., audio and video), RTCP is used to monitor transmission statistics and quality of service (QoS) and aids synchronization of multiple streams. RTP is one of the technical foundations of voice over IP and in this context is often used in conjunction with a signaling protocol such as the Session Initiation Protocol (SIP) which establishes connections across the network. RTP was developed by the Audio-Video Transport Working Group of the Internet Engineering Task Force (IETF) and first published i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Internet
The Internet (or internet) is the Global network, global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP) to communicate between networks and devices. It is a internetworking, network of networks that consists of Private network, private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, Wireless network, wireless, and optical networking technologies. The Internet carries a vast range of information resources and services, such as the interlinked hypertext documents and Web application, applications of the World Wide Web (WWW), email, electronic mail, internet telephony, streaming media and file sharing. The origins of the Internet date back to research that enabled the time-sharing of computer resources, the development of packet switching in the 1960s and the design of computer networks for data communication. The set of rules (communication protocols) to enable i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Codec
A codec is a computer hardware or software component that encodes or decodes a data stream or signal. ''Codec'' is a portmanteau of coder/decoder. In electronic communications, an endec is a device that acts as both an encoder and a decoder on a signal or data stream, and hence is a type of codec. ''Endec'' is a portmanteau of encoder/decoder. A coder or encoder encodes a data stream or a signal for transmission or storage, possibly in encrypted form, and the decoder function reverses the encoding for playback or editing. Codecs are used in videoconferencing, streaming media, and video editing applications. History Originally, in the mid-20th century, a codec was a hardware device that coded analog signals into digital form using pulse-code modulation (PCM). Later, the term was also applied to software for converting between digital signal formats, including companding functions. Examples An audio codec converts analog audio signals into digital signals for transmissi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TDMoIP
In computer networking and telecommunications, TDM over IP (TDMoIP) is the emulation of time-division multiplexing (TDM) over a packet-switched network (PSN). TDM refers to a T1, E1, T3 or E3 signal, while the PSN is based either on IP or MPLS or on raw Ethernet. A related technology is circuit emulation, which enables transport of TDM traffic over cell-based ( ATM) networks. TDMoIP is a type of pseudowire (PW). However, unlike other traffic types that can be carried over pseudowires (e.g. ATM, Frame Relay and Ethernet), TDM is a real-time bit stream, leading to TDMoIP having unique characteristics. In addition, conventional TDM networks have numerous special features, in particular those required in order to carry voice-grade telephony channels. These features imply signaling systems that support a wide range of telephony features, a rich standardization literature and well-developed Operations and Management (OAM) mechanisms. All of these factors must be taken into accou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Voice Over IP
Voice over Internet Protocol (VoIP), also known as IP telephony, is a set of technologies used primarily for voice communication sessions over Internet Protocol (IP) networks, such as the Internet. VoIP enables voice calls to be transmitted as data packets, facilitating various methods of voice communication, including traditional applications like Skype, Microsoft Teams, Google Voice, and VoIP phones. Regular telephones can also be used for VoIP by connecting them to the Internet via analog telephone adapters (ATAs), which convert traditional telephone signals into digital data packets that can be transmitted over IP networks. The broader terms Internet telephony, broadband telephony, and broadband phone service specifically refer to the delivery of voice and other communication services, such as fax, SMS, and voice messaging, over the Internet, in contrast to the traditional public switched telephone network (PSTN), commonly known as plain old telephone service (POTS) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]