Spitzer Resistivity
   HOME
*





Spitzer Resistivity
The Spitzer resistivity (or plasma resistivity) is an expression describing the electrical resistance in a plasma, which was first formulated by Lyman Spitzer in 1950. The Spitzer resistivity of a plasma decreases in proportion to the electron temperature as T_e^. The inverse of the Spitzer resistivity \eta_ is known as the Spitzer conductivity \sigma_=1/\eta_. Formulation The Spitzer resistivity is classical model of electrical resistivity based upon electron-ion collisions and it is commonly used in plasma physics. The transverse Spitzer resistivity is given by: :\eta_\perp = \frac\frac , and the parallel Spitzer resistivity by: :\eta_\parallel = \eta_\perp/1.96 \qquad (\text Z=1), where Z is the ionization of nuclei, e is the electron charge, m_e is the electron mass, \ln\Lambda is the Coulomb logarithm, \varepsilon_0 is the electric permittivity of free space, k_\text is Boltzmann's constant, and T_e is the electron temperature in kelvins. The two resistivities correspond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Resistance And Conductance
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (), while electrical conductance is measured in siemens (S) (formerly called the 'mho' and then represented by ). The resistance of an object depends in large part on the material it is made of. Objects made of electrical insulators like rubber tend to have very high resistance and low conductance, while objects made of electrical conductors like metals tend to have very low resistance and high conductance. This relationship is quantified by resistivity or conductivity. The nature of a material is not the only factor in resistance and conductance, however; it also depends on the size and shape of an object because these properties are extensive rather than int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma (physics)
Plasma ()πλάσμα
, Henry George Liddell, Robert Scott, ''A Greek English Lexicon'', on Perseus
is one of the four fundamental states of matter. It contains a significant portion of charged particles – ions and/or s. The presence of these charged particles is what primarily sets plasma apart from the other fundamental states of matter. It is the most abundant form of ordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lyman Spitzer
Lyman Spitzer Jr. (June 26, 1914 – March 31, 1997) was an American theoretical physicist, astronomer and mountaineer. As a scientist, he carried out research into star formation, plasma physics, and in 1946, conceived the idea of telescopes operating in outer space. Spitzer invented the stellarator plasma device and is the namesake of NASA's Spitzer Space Telescope. As a mountaineer, he made the first ascent of Mount Thor, with Donald C. Morton. Early life and education Spitzer was born to a Presbyterian family in Toledo, Ohio, the son of Lyman Spitzer Sr. and Blanche Carey (née Brumback). Through his paternal grandmother, he was related to inventor Eli Whitney. Spitzer graduated from Scott High School. He then attended Phillips Academy in 1929 and went on to Yale College, where he graduated Phi Beta Kappa in 1935 and was a member of Skull and Bones. During a year of study at Cambridge University, he was influenced by Arthur Eddington and the young Subrahmanyan Cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Resistivity And Conductivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter  (rho). The SI unit of electrical resistivity is the ohm- meter (Ω⋅m). For example, if a solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is , then the resistivity of the material is . Electrical conductivity or specific conductance is the reciprocal of electrical resistivity. It represents a material's ability to conduct electric current. It is commonly signified by the Greek letter  (sigma), but  (kappa) (especially in electrical engineering) and  (gamma) are sometimes used. The SI unit of electrical conductivity is siemens per metre (S/m). Resistivity and conductivity are intens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coulomb Collision
A Coulomb collision is a binary elastic collision between two charged particles interacting through their own electric field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit. This type of collision is common in plasmas where the typical kinetic energy of the particles is too large to produce a significant deviation from the initial trajectories of the colliding particles, and the cumulative effect of many collisions is considered instead. Simplified mathematical treatment for plasmas In a plasma, a Coulomb collision rarely results in a large deflection. The cumulative effect of the many small angle collisions, however, is often larger than the effect of the few large angle collisions that occur, so it is instructive to consider the collision dynamics in the limit of small deflections. We can consider an electron of charge -e and mass m_e passing a stationary ion of charge +Ze and much larger mass at a distance ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coulomb Logarithm
A Coulomb collision is a binary elastic collision between two charged particles interacting through their own electric field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit. This type of collision is common in plasmas where the typical kinetic energy of the particles is too large to produce a significant deviation from the initial trajectories of the colliding particles, and the cumulative effect of many collisions is considered instead. Simplified mathematical treatment for plasmas In a plasma, a Coulomb collision rarely results in a large deflection. The cumulative effect of the many small angle collisions, however, is often larger than the effect of the few large angle collisions that occur, so it is instructive to consider the collision dynamics in the limit of small deflections. We can consider an electron of charge -e and mass m_e passing a stationary ion of charge +Ze and much larger mass at a distan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boltzmann's Constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, and in Planck's law of black-body radiation and Boltzmann's entropy formula, and is used in calculating thermal noise in resistors. The Boltzmann constant has dimensions of energy divided by temperature, the same as entropy. It is named after the Austrian scientist Ludwig Boltzmann. As part of the 2019 redefinition of SI base units, the Boltzmann constant is one of the seven " defining constants" that have been given exact definitions. They are used in various combinations to define the seven SI base units. The Boltzmann constant is defined to be exactly . Roles of the Boltzmann constant Macroscopically, the ideal gas law states that, for an ideal gas, the product of pressure and volume is proportional to the product of amount of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and physicist William Thomson, 1st Baron Kelvin (1824–1907). The Kelvin scale is an absolute thermodynamic temperature scale, meaning it uses absolute zero as its null (zero) point. Historically, the Kelvin scale was developed by shifting the starting point of the much-older Celsius scale down from the melting point of water to absolute zero, and its increments still closely approximate the historic definition of a degree Celsius, but since 2019 the scale has been defined by fixing the Boltzmann constant to be exactly . Hence, one kelvin is equal to a change in the thermodynamic temperature that results in a change of thermal energy by . The temperature in degree Celsius is now defined as the temperature in kelvins minus 273.15, meaning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Simulation
Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics ( computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions. Computer simulations are realized by running computer programs that can be either small, running almost instantly on small devices, or large-sc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Acceleration
In a compressible sound transmission medium - mainly air - air particles get an accelerated motion: the particle acceleration or sound acceleration with the symbol a in metre/second2. In acoustics or physics, acceleration (symbol: ''a'') is defined as the rate of change (or time derivative) of velocity. It is thus a vector quantity with dimension length/time2. In SI units, this is m/s2. To accelerate an object (air particle) is to change its velocity over a period. Acceleration is defined technically as "the rate of change of velocity of an object with respect to time" and is given by the equation \mathbf = \frac where *''a'' is the acceleration vector *''v'' is the velocity vector expressed in m/s *''t'' is time expressed in seconds. This equation gives ''a'' the units of m/(s·s), or m/s2 (read as "metres per second per second", or "metres per second squared"). An alternative equation is: \mathbf = \frac where *\mathbf is the average acceleration (m/s2) *\mathbf is the init ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetic Reconnection
Magnetic reconnection is a physical process occurring in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection occurs on timescales intermediate between slow resistive diffusion of the magnetic field and fast Alfvénic timescales. The concept of magnetic reconnection was first introduced in 1950 in the PhD thesis of James Dungey to explain the coupling of mass, energy and momentum from the solar wind into Earth's magnetosphere and was published for the first time on the open literature in his seminal paper in 1961. Fundamental principles Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]