Smooth Function
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; that is, a function of class C^k is a function that has a th derivative that is continuous in its domain. A function of class C^\infty or C^\infty-function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that all these derivatives are continuous). Generally, the term smooth function refers to a C^-function. However, it may also mean "sufficiently differentiable" for the problem under consideration. Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Bump2D Illustration
Bump or bumps may refer to: Arts and entertainment * Bump (dance), a dance from the 1970s disco era * BUMP (comics), ''BUMP'' (comics), 2007-08 limited edition comic book series Fictional characters * Bobby Bumps, titular character of a series of American silent animated short films produced (1915–1925) * Bump (Transformers), Bump (''Transformers''), a fictional character in the ''Transformers'' universe * Mr. Bump, a ''Mr. Men'' character Music * "The Bump", a funky song by the Commodores from ''Machine Gun (Commodores album), Machine Gun''(1974) * "The Bump", a 1974 hit single by the band Kenny (band), Kenny * Bump (album), ''Bump'' (album), a jazz album recorded by musician John Scofield in 2000 * "Bump", a song by Raven-Symoné from ''This Is My Time (Raven-Symoné album), This Is My Time'' * "Bump", a song by Fun Lovin' Criminals from ''Loco (Fun Lovin' Criminals album), Loco'' * "Bump", a song by Spank Rock from ''YoYoYoYoYo'' * "Bump", a song by Rehab from ''Graffiti the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Recursion
Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function (mathematics), function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur. A process that exhibits recursion is ''recursive''. Video feedback displays recursive images, as does an infinity mirror. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduce ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Compact Support
In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. The notion ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Bump Function
In mathematical analysis, a bump function (also called a test function) is a function f : \Reals^n \to \Reals on a Euclidean space \Reals^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain \Reals^n forms a vector space, denoted \mathrm^\infty_0(\Reals^n) or \mathrm^\infty_\mathrm(\Reals^n). The dual space of this space endowed with a suitable topology is the space of distributions. Examples The function \Psi : \mathbb \to \mathbb given by \Psi(x) = \begin \exp\left( \frac\right), & \text , x, . In fact, by definition of support, we have that \operatorname(\Psi):=\overline =\overline, where the closure is taken with respect the Euclidean topology of the real line. The proof of smoothness follows along the same lines as for the related function discussed in the Non-analytic smooth function article. This function can be interpreted as the Gaussian function \exp\le ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Trigonometric Functions
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis. The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent functions. Their multiplicative inverse, reciprocals are respectively the cosecant, the secant, and the cotangent functions, which are less used. Each of these six trigonometric functions has a corresponding Inverse trigonometric functions, inverse function, and an analog among the hyperbolic functions. The oldest definitions of trigonometric functions, related to right-an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Transfinite Ordinal
In mathematics, transfinite numbers or infinite numbers are numbers that are " infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term ''transfinite'' was coined in 1895 by Georg Cantor, who wished to avoid some of the implications of the word ''infinite'' in connection with these objects, which were, nevertheless, not ''finite''. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as ''infinite numbers''. Nevertheless, the term ''transfinite'' also remains in use. Notable work on transfinite numbers was done by Wacław Sierpiński: ''Leçons sur les nombres transfinis'' (1928 book) much expanded into '' Cardinal and Ordinal Numbers'' (1958, 2nd ed. 1965). Definition Any finite natura ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if for every x_0 in its domain, its Taylor series about x_0 converges to the function in some neighborhood of x_0 . This is stronger than merely being infinitely differentiable at x_0 , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots in which the coefficients a_0, a_1, \dots a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Lipschitz Continuous
In mathematical analysis, Lipschitz continuity, named after Germany, German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for function (mathematics), functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (and is related to the ''modulus of continuity, modulus of uniform continuity''). For instance, every function that is defined on an interval and has a bounded first derivative is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, cal ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One su ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Mollifier Illustration
In mathematics, mollifiers (also known as ''approximations to the identity'') are particular smooth functions, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a (generalized) function, convolving it with a mollifier "mollifies" it, that is, its sharp features are smoothed, while still remaining close to the original. They are also known as Friedrichs mollifiers after Kurt Otto Friedrichs, who introduced them. Historical notes Mollifiers were introduced by Kurt Otto Friedrichs in his paper , which is considered a watershed in the modern theory of partial differential equations.See the commentary of Peter Lax on the paper in . The name of this mathematical object has a curious genesis, and Peter Lax tells the story in his commentary on that paper published in Friedrichs' "''Selecta''". According to him, at that time, the mathematician Donald Alexander Flan ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |