Schur's Property
   HOME





Schur's Property
In mathematics, Schur's property, named after Issai Schur, is the property of normed spaces that is satisfied precisely if weak convergence of sequences entails convergence in norm. Motivation When we are working in a normed space ''X'' and we have a sequence (x_) that converges weakly to x, then a natural question arises. Does the sequence converge in perhaps a more desirable manner? If so, does the sequence converge to x in norm? A canonical example of this property, and commonly used to illustrate the Schur property, is the \ell_1 sequence space. Definition Suppose that we have a normed space (''X'', , , ·, , ), x an arbitrary member of ''X'', and (x_) an arbitrary sequence in the space. We say that ''X'' has Schur's property if (x_) converging weakly to x implies that \lim_ \Vert x_n - x\Vert = 0 . In other words, the weak and strong topologies share the same convergent sequences. Note however that weak and strong topologies are always distinct in infinite-dimensional space. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Issai Schur
Issai Schur (10 January 1875 – 10 January 1941) was a Russian mathematician who worked in Germany for most of his life. He studied at the Humboldt University of Berlin, University of Berlin. He obtained his doctorate in 1901, became lecturer in 1903 and, after a stay at the University of Bonn, professor in 1919. As a student of Ferdinand Georg Frobenius, he worked on group representations (the subject with which he is most closely associated), but also in combinatorics and Quadratic residue#The Pólya–Vinogradov inequality, number theory and even theoretical physics. He is perhaps best known today for his result on the existence of the Schur decomposition and for his work on group representations (Schur's lemma). Schur published under the name of both I. Schur, and J. Schur, the latter especially in ''Journal für die reine und angewandte Mathematik''. This has led to some confusion. Childhood Issai Schur was born into a Jewish family, the son of the businessman Moses Schur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normed Vector Space
The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898. The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war period. It was badly damaged during World War II (1939–45). In the first thirty years after the war the shipyard again experienced a boom and employed up to 3,000 workers making oil tankers, and then liquid natural gas tankers. Demand dropped off in the 1970s and 1980s. In 1972 the shipyard became Chantiers de France-Dunkerque, and in 1983 merged with others yards to become part of Chantiers du Nord et de la Mediterranee, or Normed. The shipyard closed in 1987. Foundation (1898–99) The Ateliers et Chantiers de France (ACF) company was officially founded on 6 July 1898 by a consortium of six shipping brokers, the Dunkirk chamber of commerce and the state. The state asked that the shipyard be able to build steamships and also four-maste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Topology
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.) if they are closed (respectively, compact, etc.) with respect to the weak topology. Likewise, functions are sometimes called weakly continuous (respectively, weakly differentiable, weakly analytic, etc.) if they are continuous (respectively, differentiable, analytic, etc.) with respect to the weak topology. History Starting in the early 1900s, David Hilbert and Marcel Riesz made extensive use of weak convergence. The early pioneers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequence Space
In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field ''K'' of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in ''K'', and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space. The most important sequence spaces in analysis are the spaces, consisting of the -power summable sequences, with the ''p''-norm. These are special cases of L''p'' spaces for the counting measure on the set of natural numbers. Other important classes of sequences ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schur's Theorem
In discrete mathematics, Schur's theorem is any of several theorems of the mathematician Issai Schur. In differential geometry, Schur's theorem is a theorem of Axel Schur. In functional analysis, Schur's theorem is often called Schur's property, also due to Issai Schur. Ramsey theory In Ramsey theory, Schur's theorem states that for any partition of the positive integers into a finite number of parts, one of the parts contains three integers ''x'', ''y'', ''z'' with :x + y = z. For every positive integer ''c'', ''S''(''c'') denotes the smallest number ''S'' such that for every partition of the integers \ into ''c'' parts, one of the parts contains integers ''x'', ''y'', and ''z'' with x + y = z. Schur's theorem ensures that ''S''(''c'') is well-defined for every positive integer ''c''. The numbers of the form ''S''(''c'') are called Schur's numbers. Folkman's theorem generalizes Schur's theorem by stating that there exist arbitrarily large sets of integers, all of whose n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]