Suppes–Lemmon Notation
   HOME





Suppes–Lemmon Notation
Suppes–Lemmon notation is a natural deductive logic notation system developed by E.J. Lemmon.See for an introductory presentation of Lemmon's natural deduction system. Derived from Suppes' method,See , for an introductory presentation of Suppes' natural deduction system. it represents natural deduction proofs as sequences of justified steps. Both methods use inference rules derived from Gentzen's 1934/1935 natural deduction system, in which proofs were presented in tree-diagram form rather than in the tabular form of Suppes and Lemmon. Although the tree-diagram layout has advantages for philosophical and educational purposes, the tabular layout is much more convenient for practical applications. A similar tabular layout is presented by Kleene. The main difference is that Kleene does not abbreviate the left-hand sides of assertions to line numbers, preferring instead to either give full lists of precedent propositions or alternatively indicate the left-hand sides by bars runn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Deduction
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. History Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system). Such axiomatizations were most famously used by Russell and Whitehead in their mathematical treatise ''Principia Mathematica''. Spurred on by a series of seminars in Poland in 1926 by Łukasiewicz that advocated a more natural treatment of logic, Jaśkowski made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935. His proposals led to d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Double Negation
In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign expresses negation. Like the law of the excluded middle, this principle is considered to be a law of thought in classical logic, but it is disallowed by intuitionistic logic. The principle was stated as a theorem of propositional logic by Russell and Whitehead in ''Principia Mathematica'' as: :: \mathbf. \ \ \vdash.\ p \ \equiv \ \thicksim(\thicksim p)PM 1952 reprint of 2nd edition 1927 pp. 101–02, 117. ::"This is the principle of double negation, ''i.e.'' a proposition is equivalent of the falsehood of its negation." Elimination and introduction Double negation elimination and double negation introduction a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems of a first-order theory rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Deduction
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. History Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system). Such axiomatizations were most famously used by Russell and Whitehead in their mathematical treatise ''Principia Mathematica''. Spurred on by a series of seminars in Poland in 1926 by Łukasiewicz that advocated a more natural treatment of logic, Jaśkowski made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935. His proposals led to d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Principle Of Explosion
In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. The proof of this principle was first given by 12th-century French philosopher William of Soissons. Due to the principle of explosion, the existence of a contradiction ( inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reductio Ad Absurdum
In logic, (Latin for "reduction to absurdity"), also known as (Latin for "argument to absurdity") or ''apagogical argument'', is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction. This argument form traces back to Ancient Greek philosophy and has been used throughout history in both formal mathematical and philosophical reasoning, as well as in debate. In mathematics, the technique is called ''proof by contradiction''. In formal logic, this technique is captured by an axiom for "Reductio ad Absurdum", normally given the abbreviation RAA, which is expressible in propositional logic. This axiom is the introduction rule for negation (see ''negation introduction''). Examples The "absurd" conclusion of a ''reductio ad absurdum'' argument can take a range of forms, as these examples show: * The Earth cannot be flat; otherwise, since the Earth is assumed to be finite in extent, we would find peo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modus Ponens
In propositional logic, (; MP), also known as (), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "''P'' implies ''Q.'' ''P'' is true. Therefore, ''Q'' must also be true." ''Modus ponens'' is a mixed hypothetical syllogism and is closely related to another valid form of argument, '' modus tollens''. Both have apparently similar but invalid forms: affirming the consequent and denying the antecedent. Constructive dilemma is the disjunctive version of ''modus ponens''. The history of ''modus ponens'' goes back to antiquity. The first to explicitly describe the argument form ''modus ponens'' was Theophrastus. It, along with '' modus tollens'', is one of the standard patterns of inference that can be applied to derive chains of conclusions that lead to the desired goal. Explanation The form of a ''modus ponens'' argument is a mixed hypothetical syllogism, with two premises and a con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reductio Ad Absurdum
In logic, (Latin for "reduction to absurdity"), also known as (Latin for "argument to absurdity") or ''apagogical argument'', is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction. This argument form traces back to Ancient Greek philosophy and has been used throughout history in both formal mathematical and philosophical reasoning, as well as in debate. In mathematics, the technique is called ''proof by contradiction''. In formal logic, this technique is captured by an axiom for "Reductio ad Absurdum", normally given the abbreviation RAA, which is expressible in propositional logic. This axiom is the introduction rule for negation (see ''negation introduction''). Examples The "absurd" conclusion of a ''reductio ad absurdum'' argument can take a range of forms, as these examples show: * The Earth cannot be flat; otherwise, since the Earth is assumed to be finite in extent, we would find peo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Substitution (logic)
A substitution is a syntactic transformation on formal expressions. To ''apply'' a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a ''substitution instance'', or ''instance'' for short, of the original expression. Propositional logic Definition Where ''ψ'' and ''φ'' represent formulas of propositional logic, ''ψ'' is a ''substitution instance'' of ''φ'' if and only if ''ψ'' may be obtained from ''φ'' by substituting formulas for propositional variables in ''φ'', replacing each occurrence of the same variable by an occurrence of the same formula. For example: ::''ψ:'' (R → S) & (T → S) is a substitution instance of ::''φ:'' P & Q That is, ''ψ'' can be obtained by replacing P and Q in ''φ'' with (R → S) and (T → S) respectively. Similarly: ::''ψ:'' (A ↔ A) ↔ (A ↔ A) is a substitution instance of: ::''φ:'' (A ↔ A) since ''ψ'' can be obta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Lemmon
Edward John Lemmon (1 June 1930 – 29 July 1966) was a British logician and philosopher born in Sheffield, England. He is most well known for his work on modal logic, particularly his joint text with Dana Scott published posthumously (Lemmon and Scott, 1977). Biography Lemmon attended King Edward VII SchoolSchool magazine, 1947
in Sheffield until 1947, before reading Literae humaniores at , as an undergraduate, and was appointed Fellow of

Modus Tollens
In propositional logic, ''modus tollens'' () (MT), also known as ''modus tollendo tollens'' (Latin for "mode that by denying denies") and denying the consequent, is a deductive argument form and a rule of inference. ''Modus tollens'' is a mixed hypothetical syllogism that takes the form of "If ''P'', then ''Q''. Not ''Q''. Therefore, not ''P''." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from ''P implies Q'' to ''the negation of Q implies the negation of P'' is a valid argument. The history of the inference rule ''modus tollens'' goes back to antiquity. The first to explicitly describe the argument form ''modus tollens'' was Theophrastus. ''Modus tollens'' is closely related to ''modus ponens''. There are two similar, but invalid, forms of argument: affirming the consequent and denying the antecedent. See also contraposition and proof by contrapositive. Explanation The form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequent
In mathematical logic, a sequent is a very general kind of conditional assertion. : A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n. A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asserted formulas ''Bj'' (called "succedents" or " consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus. Introduction The form and semantics of sequents Sequents are best understood in the context of the following three kinds of logical judgments: Unconditional assertion. No antecedent formulas. * Example: ⊢ ''B'' * Meaning: ''B'' is true. Conditional assertion. Any number of antecedent formulas. Simple conditional assertion. Single consequent formula. * Example: ''A1'', ''A2'', ''A3'' ⊢ ''B'' * Meaning: IF ''A1'' AND ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]