Static Spacetime
In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Formally, a spacetime is static if it admits a global, non-vanishing, timelike Killing vector field K which is irrotational, ''i.e.'', whose orthogonal distribution is involutive. (Note that the leaves of the associated foliation are necessarily space-like hypersurfaces.) Thus, a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds. Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product ''R'' \times ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally. A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation :x_1^2+x_2^2+\cdots+x_n^2-1=0 defines an algebraic hypersurface of dimension in the Euclidean space of dimension . This hypersurface is also a smooth manifold, and is called a hypersphere or an -sphere. Smooth hypersurface A hypersurface that is a smooth manifold is called a ''smooth hypersurface''. In , a smooth hypersurface is ori ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spherically Symmetric Spacetime
In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze. Spherically symmetric models are not entirely inappropriate: many of them have Penrose diagrams similar to those of rotating spacetimes, and these typically have qualitative features (such as Cauchy horizons) that are unaffected by rotation. One such application is the study of mass inflation due to counter-moving streams of infalling matter in the interior of a black hole. Formal definition A spherically symmetric spacetime is a spacetime whose isometry group contains a subgroup which is isomorphic to the rotation group SO(3) and the orbits of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermann Weyl
Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, he is associated with the University of Göttingen tradition of mathematics, represented by Carl Friedrich Gauss, David Hilbert and Hermann Minkowski. His research has had major significance for theoretical physics as well as purely mathematical disciplines such as number theory. He was one of the most influential mathematicians of the twentieth century, and an important member of the Institute for Advanced Study during its early years. Weyl contributed to an exceptionally wide range of fields, including works on space, time, matter, philosophy, logic, symmetry and the history of mathematics. He was one of the first to conceive of combining general relativity with the laws of electromagnetism. Freeman Dyson wrote that Weyl alone bore comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reissner–Nordström Metric
In physics and astronomy, the Reissner–Nordström metric is a Static spacetime, static solution to the Einstein–Maxwell equations, Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass ''M''. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric. The metric was discovered between 1916 and 1921 by Hans Reissner, Hermann Weyl, Gunnar Nordström and George Barker Jeffery independently. Metric In spherical coordinates , the Reissner–Nordström metric (i.e. the line element) is : ds^2 = c^2\, d\tau^2 = \left( 1 - \frac + \frac \right) c^2\, dt^2 -\left( 1 - \frac + \frac \right)^ \, dr^2 - ~ r^2 \, d\theta^2 - ~ r^2\sin^2\theta \, d\varphi^2 , where * c is the speed of light * \tau is the proper time * t is the time coordinate (measured by a stationary clock at infinity). * r is the radial coordinate * (\theta, \varphi) are the spherical angles * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
De Sitter Space
In mathematical physics, ''n''-dimensional de Sitter space (often denoted dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canonical Riemannian metric). The main application of de Sitter space is its use in general relativity, where it serves as one of the simplest mathematical models of the universe consistent with the observed accelerating expansion of the universe. More specifically, de Sitter space is the maximally symmetric vacuum solution of Einstein's field equations in which the cosmological constant \Lambda is positive (corresponding to a positive vacuum energy density and negative pressure). De Sitter space and anti-de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked closely together in Le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifold, manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport. Any smooth surface in three-dimensional Eucl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentzian Manifold
In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere non-degenerate bilinear form, nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of Positive-definite bilinear form, positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as Causal structure, timelike, null, and spacelike. Introduction Manifolds In differential geometry, a differentiable manifold is a space that is locally similar to a Euclidean space. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the coordinates of the point. An ''n''-dimensional differentiable manifold is a generalisation of '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Foliation
In mathematics (differential geometry), a foliation is an equivalence relation on an topological manifold, ''n''-manifold, the equivalence classes being connected, injective function, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the manifold decomposition, decomposition of the real coordinate space R''n'' into the cosets ''x'' + R''p'' of the standardly embedding, embedded subspace topology, subspace R''p''. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear manifold, piecewise-linear, differentiable manifold, differentiable (of class ''Cr''), or analytic manifold, analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class ''Cr'' it is usually understood that ''r'' ≥ 1 (otherwise, ''C''0 is a topological foliation). The number ''p'' (the dime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive ''where'' and ''when'' events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and special theory of relativity. In 1908, Hermann Minkowski presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimensional continuum now known as Minkowski space. This interpretation proved vital t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Involution (mathematics)
In mathematics, an involution, involutory function, or self-inverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (), reciprocation (), and complex conjugation () in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions and is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: : a_0 = a_1 = 1 and a_n = a_ + (n - 1)a_ for n > 1. The first few terms of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |