Sign Flag
In a computer processor the negative flag or sign flag is a single bit in a system status (flag) register used to indicate whether the result of the last mathematical operation produced a value in which the most significant bit (the left most bit) was set. In a two's complement interpretation of the result, the negative flag is set if the result was negative. For example, in an 8-bit signed number system, -37 will be represented as 1101 1011 in binary (the most significant bit, or sign bit, is 1), while +37 will be represented as 0010 0101 (the most significant bit is 0). The negative flag is set according to the result in the x86 series processors by the following instructions (referring to the Intel 80386 manual): * All arithmetic operations except multiplication and division; * compare instructions (equivalent to subtract instructions without storing the result); * Logical instructions – XOR, AND, OR; * TEST Test(s), testing, or TEST may refer to: * Test (assessment) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer
A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic sets of operations known as Computer program, ''programs'', which enable computers to perform a wide range of tasks. The term computer system may refer to a nominally complete computer that includes the Computer hardware, hardware, operating system, software, and peripheral equipment needed and used for full operation; or to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of Programmable logic controller, industrial and Consumer electronics, consumer products use computers as control systems, including simple special-purpose devices like microwave ovens and remote controls, and factory devices like industrial robots. Computers are at the core of general-purpose devices ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Central Processing Unit
A central processing unit (CPU), also called a central processor, main processor, or just processor, is the primary Processor (computing), processor in a given computer. Its electronic circuitry executes Instruction (computing), instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, CPU design, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic operation, arithmetic and Bitwise operation, logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the #Fetch, fetching (from memory), #Decode, decoding and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two's Complement
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, and more generally, fixed point binary values. Two's complement uses the binary digit with the ''greatest'' value as the ''sign'' to indicate whether the binary number is positive or negative; when the most significant bit is ''1'' the number is signed as negative and when the most significant bit is ''0'' the number is signed as positive. As a result, non-negative numbers are represented as themselves: 6 is 0110, zero is 0000, and −6 is 1010 (the result of applying the bitwise NOT operator to 6 and adding 1). However, while the number of binary bits is fixed throughout a computation it is otherwise arbitrary. Unlike the ones' complement scheme, the two's complement scheme has only one representation for zero. Furthermore, arithmetic implementations can be used on signed as well as unsigned integers and differ only in the integer overflow situations. Proce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sign Bit
In computer science, the sign bit is a bit in a signed number representation that indicates the sign of a number. Although only signed numeric data types have a sign bit, it is invariably located in the most significant bit position, so the term may be used interchangeably with "most significant bit" in some contexts. Almost always, if the sign bit is 0, the number is non-negative (positive or zero). If the sign bit is 1 then the number is negative. Formats other than two's complement integers allow a signed zero: distinct "positive zero" and "negative zero" representations, the latter of which does not correspond to the mathematical concept of a negative number. When using a complement representation, to convert a signed number to a wider format the additional bits must be filled with copies of the sign bit in order to preserve its numerical value, a process called '' sign extension'' or ''sign propagation''. Sign bit weight in Two's complement Two's complement is by far th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
X86 Architecture
x86 (also known as 80x86 or the 8086 family) is a family of complex instruction set computer (CISC) instruction set architectures initially developed by Intel, based on the 8086 microprocessor and its 8-bit-external-bus variant, the 8088. The 8086 was introduced in 1978 as a fully 16-bit extension of 8-bit Intel's 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186, 80286, 80386 and 80486. Colloquially, their names were "186", "286", "386" and "486". The term is not synonymous with IBM PC compatibility, as this implies a multitude of other computer hardware. Embedded systems and general-purpose computers used x86 chips before the PC-compatible market started, some of them before the IBM PC (1981) debut. , most desktop and laptop computers sold are based o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intel 80386
The Intel 386, originally released as the 80386 and later renamed i386, is the third-generation x86 architecture microprocessor from Intel. It was the first 32-bit computing, 32-bit processor in the line, making it a significant evolution in the x86 architecture. Pre-production samples of the 386 were released to select developers in 1985, while mass production commenced in 1986. The 386 was the central processing unit, central processing unit (CPU) of many workstations and high-end personal computers of the time. The 386 began to fall out of public use starting with the release of the i486 processor in 1989, while in embedded systems the 386 remained in widespread use until Intel finally discontinued it in 2007. Compared to its predecessor the Intel 80286 ("286"), the 80386 added a three-stage instruction pipelining, instruction pipeline which it brings up to total of 6-stage instruction pipeline, extended the architecture from 16-bits to 32-bits, and added an on-chip memory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
TEST (x86 Instruction)
In the x86 assembly language, the TEST instruction performs a bitwise AND on two operands. The flags SF, ZF, PF are modified while the numerical result of the AND is discarded. The OF and CF flags are set to 0, while AF flag is undefined. There are 9 different opcodes for the TEST instruction depending on the type and size of the operands. It can test 8-bit, 16-bit, 32-bit, or 64-bit values. It can also test registers and memory against registers and immediate values. TEST opcode variations The TEST operation clears the flags CF and OF to zero. The SF is set to the most significant bit of the result of the AND. If the result is 0, the ZF is set to 1, otherwise set to 0. The parity flag is set to the bitwise XNOR of the least significant byte In computing, bit numbering is the convention used to identify the bit positions in a binary number. Bit significance and indexing In computing, the least significant bit (LSb) is the bit position in a binary integer represent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |