HOME





Schubert Variety
In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, \mathbf_k(V) of k-dimensional subspaces of a vector space V, usually with singular points. Like the Grassmannian, it is a kind of moduli space, whose elements satisfy conditions giving lower bounds to the dimensions of the intersections of its elements w\subset V, with the elements of a specified complete flag. Here V may be a vector space over an arbitrary field, but most commonly this taken to be either the real or the complex numbers. A typical example is the set X of 2-dimensional subspaces w \subset V of a 4-dimensional space V that intersect a fixed (reference) 2-dimensional subspace V_2 nontrivially. :X \ =\ \. Over the real number field, this can be pictured in usual ''xyz''-space as follows. Replacing subspaces with their corresponding projective spaces, and intersecting with an affine coordinate patch of \mathbb(V), we obtain an open subset ''X''° ⊂ ''X''. This is isomorphic to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Combinatorics
Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra. History The term "algebraic combinatorics" was introduced in the late 1970s. Through the early or mid-1990s, typical combinatorial objects of interest in algebraic combinatorics either admitted a lot of symmetries (association schemes, strongly regular graphs, posets with a group action) or possessed a rich algebraic structure, frequently of representation theoretic origin (symmetric functions, Young tableaux). This period is reflected in the area 05E, ''Algebraic combinatorics'', of the AMS Mathematics Subject Classification, introduced in 1991. Scope Algebraic combinatorics has come to be seen more expansively as an area of mathematics where the interaction of combinatorial and algebraic methods is particularly strong and signific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph Bernstein
Joseph Bernstein (sometimes spelled I. N. Bernshtein; ; ; born 18 April 1945) is a Soviet-born Israeli mathematician working at Tel Aviv University. He works in algebraic geometry, representation theory, and number theory. Biography Bernstein received his Ph.D. in 1972 under Israel Gelfand at Moscow State University. In 1981, he emigrated to the United States due to growing antisemitism in the Soviet Union. Bernstein was a professor at Harvard during 1983-1993. He was a visiting scholar at the Institute for Advanced Study in 1985-86 and again in 1997-98. In 1993, he moved to Israel to take a professorship at Tel Aviv University (emeritus since 2014). Awards and honors Bernstein received a gold medal at the 1962 International Mathematical Olympiad. He was elected to the Israel Academy of Sciences and Humanities in 2002 and was elected to the United States National Academy of Sciences in 2004. In 2004, Bernstein was awarded the Israel Prize for mathematics. In 1998, he was an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schubert Polynomial
In mathematics, Schubert polynomials are generalizations of Schur polynomials that represent cohomology classes of Schubert cycles in flag varieties. They were introduced by and are named after Hermann Schubert. Background described the history of Schubert polynomials. The Schubert polynomials \mathfrak_w are polynomials in the variables x_1,x_2,\ldots depending on an element w of the infinite symmetric group S_\infty of all permutations of \N fixing all but a finite number of elements. They form a basis for the polynomial ring \Z _1,x_2,\ldots/math> in infinitely many variables. The cohomology of the flag manifold \text(m) is \Z _1, x_2,\ldots, x_mI, where I is the ideal generated by homogeneous symmetric functions of positive degree. The Schubert polynomial \mathfrak_w is the unique homogeneous polynomial of degree \ell(w) representing the Schubert cycle of w in the cohomology of the flag manifold \text(m) for all sufficiently large m. Properties *If w_0 is the permutat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Degeneracy Loci
In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is the expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over projective space. pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and found the polynomial in general. proved a more general version, and generalized it further. Statement Given a morphism of vector bundles ''E'', ''F'' of ranks ''m'' and ''n'' over a smooth variety, its ''k''-th degeneracy locus (''k'' ≤ min(''m'',''n'')) is the variety of points where it has rank at most ''k''. If all components of the degeneracy locus have the expected codimension In mathematics, codimension is a basic geometric idea that applies to subspaces i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Fulton (mathematician)
William Edgar Fulton (born August 29, 1939) is an American mathematician, specializing in algebraic geometry. Education and career He received his undergraduate degree from Brown University in 1961 and his doctorate from Princeton University in 1966. His Ph.D. thesis, written under the supervision of Gerard Washnitzer, was on ''The fundamental group of an algebraic curve''. Fulton worked at Princeton and Brandeis University from 1965 until 1970, when he began teaching at Brown. In 1987 he moved to the University of Chicago.Announcement of the
1996 Steele Prizes at the

picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrix (mathematics), matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The algebraic objects amenable to such a description include group (mathematics), groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the group representation, representation theory of groups, in which elements of a group are represented by invertible matrices such that the group operation is matrix multiplication. Representation theory is a useful method because it reduces problems in abstract algebra to problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in ''Archiv der Mathematik und Physik''. and Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, 21, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Fifteenth Problem
Hilbert's fifteenth problem is one of the 23 Hilbert problems set out in a list compiled in 1900 by David Hilbert. The problem is to put Schubert's enumerative calculus on a rigorous foundation. Introduction Schubert calculus is the intersection theory of the 19th century, together with applications to enumerative geometry. Justifying this calculus was the content of Hilbert's 15th problem, and was also the major topic of the 20 century algebraic geometry.Hilbert, David, "Mathematische Probleme" Göttinger Nachrichten, (1900), pp. 253-297, and in Archiv der Mathematik und Physik, (3) 1 (1901), 44-63 and 213-237. Published in English translation by Dr. Maby Winton Newson, Bulletin of the American Mathematical Society 8 (1902), 437-47Web-viewable textPDF text
.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental ideas including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). He adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set a course for mathematical research of the 20th century. Hilbert and his students contributed to establishing rigor and developed important tools used in modern mathematical physics. He was a cofounder of proof theory and mathematical logic. Life Early life and education Hilbert, the first of two children and only son of O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enumerative Geometry
In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory. History The problem of Apollonius is one of the earliest examples of enumerative geometry. This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. In general, the problem for three given circles has eight solutions, which can be seen as 23, each tangency condition imposing a quadratic condition on the space of circles. However, for special arrangements of the given circles, the number of solutions may also be any integer from 0 (no solutions) to six; there is no arrangement for which there are seven solutions to Apollonius' problem. Key tools A number of tools, ranging from the elementary to the more advanced, include: * Dimension counting * Bézout's theorem * Schubert calculus, and more generally characteristic classes in cohomology * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]