Savage's Subjective Expected Utility Model
   HOME





Savage's Subjective Expected Utility Model
In decision theory, Savage's subjective expected utility model (also known as Savage's framework, Savage's axioms, or Savage's representation theorem) is a formalization of subjective expected utility (SEU) developed by Leonard J. Savage in his 1954 book ''The Foundations of Statistics'', based on previous work by Ramsey, von Neumann and de Finetti. Savage's model concerns with deriving a subjective probability distribution and a utility function such that an agent's choice under uncertainty can be represented via expected-utility maximization. His contributions to the theory of SEU consist of formalizing a framework under which such problem is well-posed, and deriving conditions for its positive solution. Primitives and problem Savage's framework posits the following primitives to represent an agent's choice under uncertainty: * A set of ''states of the world'' \Omega, of which only one \omega \in \Omega is true. The agent does not know the true \omega, so \Omega ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decision Theory
Decision theory or the theory of rational choice is a branch of probability theory, probability, economics, and analytic philosophy that uses expected utility and probabilities, probability to model how individuals would behave Rationality, rationally under uncertainty. It differs from the Cognitive science, cognitive and Behavioural sciences, behavioral sciences in that it is mainly Prescriptive economics, prescriptive and concerned with identifying optimal decision, optimal decisions for a rational agent, rather than Descriptive economics, describing how people actually make decisions. Despite this, the field is important to the study of real human behavior by Social science, social scientists, as it lays the foundations to Mathematical model, mathematically model and analyze individuals in fields such as sociology, economics, criminology, cognitive science, moral philosophy and political science. History The roots of decision theory lie in probability theory, developed by Blai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triviality (mathematics)
In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or a particularly simple object possessing a given structure (e.g., group (mathematics), group, topological space). The noun triviality usually refers to a simple technical aspect of some proof or definition. The origin of the term in mathematical language comes from the medieval Trivium (education), trivium curriculum, which distinguishes from the more difficult quadrivium curriculum. The opposite of trivial is nontrivial, which is commonly used to indicate that an example or a solution is not simple, or that a statement or a theorem is not easy to prove. Triviality does not have a rigorous definition in mathematics. It is Subjectivity and objectivity (philosophy), subjective, and often determined in a given situation by the knowledge and experience of those considering the case. Trivial and nontrivial solutions In mathematics, the term "trivial" is ofte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Choice Modelling
Choice modelling attempts to model the decision process of an individual or segment via revealed preferences or stated preferences made in a particular context or contexts. Typically, it attempts to use discrete choices (A over B; B over A, B & C) in order to infer positions of the items (A, B and C) on some relevant latent scale (typically "utility" in economics and various related fields). Indeed many alternative models exist in econometrics, marketing, sociometrics and other fields, including utility maximization, optimization applied to consumer theory, and a plethora of other identification strategies which may be more or less accurate depending on the data, sample, hypothesis and the particular decision being modelled. In addition, choice modelling is regarded as the most suitable method for estimating consumers' willingness to pay for quality improvements in multiple dimensions. Related terms There are a number of terms which are considered to be synonyms with the term c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Expected Utility
The expected utility hypothesis is a foundational assumption in mathematical economics concerning decision making under uncertainty. It postulates that rational agents maximize utility, meaning the subjective desirability of their actions. Rational choice theory, a cornerstone of microeconomics, builds this postulate to model aggregate social behaviour. The expected utility hypothesis states an agent chooses between risky prospects by comparing expected utility values (i.e., the weighted sum of adding the respective utility values of payoffs multiplied by their probabilities). The summarised formula for expected utility is U(p)=\sum u(x_k)p_k where p_k is the probability that outcome indexed by k with payoff x_k is realized, and function ''u'' expresses the utility of each respective payoff. Graphically the curvature of the u function captures the agent's risk attitude. For example, imagine you’re offered a choice between receiving $50 for sure, or flipping a coin to win $100 if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decision Theory
Decision theory or the theory of rational choice is a branch of probability, economics, and analytic philosophy that uses expected utility and probability to model how individuals would behave rationally under uncertainty. It differs from the cognitive and behavioral sciences in that it is mainly prescriptive and concerned with identifying optimal decisions for a rational agent, rather than describing how people actually make decisions. Despite this, the field is important to the study of real human behavior by social scientists, as it lays the foundations to mathematically model and analyze individuals in fields such as sociology, economics, criminology, cognitive science, moral philosophy and political science. History The roots of decision theory lie in probability theory, developed by Blaise Pascal and Pierre de Fermat in the 17th century, which was later refined by others like Christiaan Huygens. These developments provided a framework for understanding risk and uncerta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann-Morgenstern Utility Theorem
The term () is used in German surnames either as a nobiliary particle indicating a noble patrilineality, or as a simple preposition used by commoners that means or . Nobility directories like the often abbreviate the noble term to ''v.'' In medieval or early modern names, the particle was at times added to commoners' names; thus, meant . This meaning is preserved in Swiss toponymic surnames and in the Dutch , which is a cognate of but also does not necessarily indicate nobility. Usage Germany and Austria The abolition of the monarchies in Germany and Austria in 1919 meant that neither state has a privileged nobility, and both have exclusively republican governments. In Germany, this means that legally ''von'' simply became an ordinary part of the surnames of the people who used it. There are no longer any legal privileges or constraints associated with this naming convention. According to German alphabetical sorting, people with ''von'' in their surnames – of no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Anscombe-Aumann Subjective Expected Utility Model
In decision theory, the Anscombe-Aumann subjective expected utility model (also known as Anscombe-Aumann framework, Anscombe-Aumann approach, or Anscombe-Aumann representation theorem) is a framework to formalizing subjective expected utility (SEU) developed by Frank Anscombe and Robert Aumann. Anscombe and Aumann's approach can be seen as an extension of Savage's subjective expected utility model, Savage's framework to deal with more general acts, leading to a simplification of Savage's representation theorem. It can also be described as a middle-course theory that deals with both objective uncertainty (as in the von Neumann-Morgenstern utility theorem, von Neumann-Morgenstern framework) and subjective uncertainty (as in Savage's framework). The Anscombe-Aumann framework builds upon previous work by Leonard J. Savage, Savage, John von Neumann, von Neumann, and Oskar Morgenstern, Morgenstern on the theory of choice under uncertainty and the formalization of SEU. It has since become ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a linear endomorphism. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Up To
Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, " is unique up to " means that all objects under consideration are in the same equivalence class with respect to the relation . Moreover, the equivalence relation is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation that relates two lists if one can be obtained by reordering (permutation, permuting) the other. As another example, the statement "the solution to an indefinite integral is , up ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Measure
In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume) is that a probability measure must assign value 1 to the entire space. Intuitively, the additivity property says that the probability assigned to the union of two disjoint (mutually exclusive) events by the measure should be the sum of the probabilities of the events; for example, the value assigned to the outcome "1 or 2" in a throw of a dice should be the sum of the values assigned to the outcomes "1" and "2". Probability measures have applications in diverse fields, from physics to finance and biology. Definition The requirements for a set function \mu to be a probability measure on a σ-algebra are that: * \mu must return results in the unit interval ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs (x, y), where x is an element of X and y is an element of Y. It encodes the common concept of relation: an element x is ''related'' to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime p is related to each integer z that is a Divisibility, multiple of p, but not to an integer that is not a Multiple (mathematics), multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as -4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13. Binary relations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sure-thing Principle
In decision theory, the sure-thing principle states that a decision maker who decided they would take a certain action in the case that event ''E'' has occurred, as well as in the case that the negation of ''E'' has occurred, should also take that same action if they know nothing about ''E''. The principle was coined by L.J. Savage:Savage, L. J. (1954), ''The foundations of statistics''. John Wiley & Sons Inc., New York. Savage formulated the principle as a dominance principle, but it can also be framed probabilistically. Richard Jeffrey and later Judea Pearl showed that Savage's principle is only valid when the probability of the event considered (e.g., the winner of the election) is unaffected by the action (buying the property). Under such conditions, the sure-thing principle is a theorem in the ''do''-calculus (see Bayes networks). Blyth constructed a counterexample to the sure-thing principle using sequential sampling in the context of Simpson's paradox, but this example v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]