Rosser's Trick
   HOME
*





Rosser's Trick
In mathematical logic, Rosser's trick is a method for proving Gödel's incompleteness theorems without the assumption that the theory being considered is ω-consistent (Smorynski 1977, p. 840; Mendelson 1977, p. 160). This method was introduced by J. Barkley Rosser in 1936, as an improvement of Gödel's original proof of the incompleteness theorems that was published in 1931. While Gödel's original proof uses a sentence that says (informally) "This sentence is not provable", Rosser's trick uses a formula that says "If this sentence is provable, there is a shorter proof of its negation". Background Rosser's trick begins with the assumptions of Gödel's incompleteness theorem. A theory T is selected which is effective, consistent, and includes a sufficient fragment of elementary arithmetic. Gödel's proof shows that for any such theory there is a formula \operatorname_T(x,y) which has the intended meaning that y is a natural number code (a Gödel number) for a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel's Incompleteness Theorems
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (i.e., an algorithm) is capable of proving all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always be statements about natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem, an extension of the first, shows that the system cannot demonstrate its own consistency. Employing a diagonal argument, Gödel's in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Axioms
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor function, successor operation and mathematical induction, induction. In 1881, Charles Sanders Peirce provided an Axiomatic system#Axiomatization, axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Lemma
In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories of the natural numbers—specifically those theories that are strong enough to represent all computable functions. The sentences whose existence is secured by the diagonal lemma can then, in turn, be used to prove fundamental limitative results such as Gödel's incompleteness theorems and Tarski's undefinability theorem. Background Let \mathbb be the set of natural numbers. A first-order theory T in the language of arithmetic ''represents'' the computable function f: \mathbb\rightarrow\mathbb if there exists a "graph" predicate \mathcal_f(x, y) in the language of T such that for each n \in \mathbb : \vdash_\,(\forall y) ^\circ f(n)=y) \Leftrightarrow \mathcal_f(^\circ n,\,y)/math> Here ^\circ n is the numeral corresponding to the natural number n, which is defined to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliott Mendelson
Elliott Mendelson (May 24, 1931 – May 7, 2020) was an American logician. He was a professor of mathematics at Queens College of the City University of New York, and the Graduate Center, CUNY. He was Jr. Fellow, Society of Fellows, Harvard University, 1956–58. Career Mendelson earned his BA from Columbia University and PhD from Cornell University. Mendelson taught mathematics at the college level for more than 30 years, and is the author of books on logic, philosophy of mathematics, calculus, game theory and mathematical analysis. His ''Introduction to Mathematical Logic'', first published in 1964, was reviewed by Dirk van Dalen who noted that it included "a large variety of subjects that should be part of the education of any mathematics student with an interest in foundational matters." Dirk van Dalen (1969Review: Introduction to Mathematical Logic Journal of Symbolic Logic 34(1): 110,1 via JSTOR Books Sole author * * * * * * * Co-author * * * * Editor * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jon Barwise
Kenneth Jon Barwise (; June 29, 1942 – March 5, 2000) was an American mathematician, philosopher and logician who proposed some fundamental revisions to the way that logic is understood and used. Education and career Born in Independence, Missouri to Kenneth T. and Evelyn Barwise, Jon was a precocious child. A pupil of Solomon Feferman at Stanford University, Barwise started his research in infinitary logic. After positions as assistant professor at Yale University and the University of Wisconsin, during which time his interests turned to natural language, he returned to Stanford in 1983 to direct the Center for the Study of Language and Information. He began teaching at Indiana University in 1990. He was elected a Fellow of the American Academy of Arts and Sciences in 1999. In his last year, Barwise was invited to give the 2000 Gödel Lecture; he died prior to the lecture. Philosophical and logical work Barwise contended that, by being explicit about the context in w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Symbolic Logic
The '' Journal of Symbolic Logic'' is a peer-reviewed mathematics journal published quarterly by Association for Symbolic Logic. It was established in 1936 and covers mathematical logic. The journal is indexed by ''Mathematical Reviews'', Zentralblatt MATH, and Scopus. Its 2009 MCQ was 0.28, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... was 0.631. External links * Mathematics journals Publications established in 1936 Multilingual journals Quarterly journals Association for Symbolic Logic academic journals Logic journals Cambridge University Press academic journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]