HOME
*





Riemann Solver
A Riemann solver is a numerical method used to solve a Riemann problem. They are heavily used in computational fluid dynamics and computational magnetohydrodynamics. Definition Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem. They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the Riemann solver. Exact solvers Sergei K. Godunov is credited with introducing the first exact Riemann solver for the Euler equations, by extending the previous CIR (Courant-Isaacson-Rees) method to non-linear systems of hyperbolic conservation laws. Modern solvers are able to simulate relativistic effects and magnetic fields. More recent research shows that an exact series solution to the Riemann problem exists, which may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Lax
Peter David Lax (born Lax Péter Dávid; 1 May 1926) is a Hungarian-born American mathematician and Abel Prize laureate working in the areas of pure and applied mathematics. Lax has made important contributions to integrable systems, fluid dynamics and shock waves, solitonic physics, hyperbolic conservation laws, and mathematical and scientific computing, among other fields. In a 1958 paper Lax stated a conjecture about matrix representations for third order hyperbolic polynomials which remained unproven for over four decades. Interest in the "Lax conjecture" grew as mathematicians working in several different areas recognized the importance of its implications in their field, until it was finally proven to be true in 2003. Life and education Lax was born in Budapest, Hungary to a Jewish family. Lax began displaying an interest in mathematics at age twelve, and soon his parents hired Rózsa Péter as a tutor for him. His parents Klara Kornfield and Henry Lax were both phy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Method
In numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Mathematical definition Let F(x,y)=0 be a well-posed problem, i.e. F:X \times Y \rightarrow \mathbb is a real or complex functional relationship, defined on the cross-product of an input data set X and an output data set Y, such that exists a locally lipschitz function g:X \rightarrow Y called resolvent, which has the property that for every root (x,y) of F, y=g(x). We define numerical method for the approximation of F(x,y)=0, the sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ... of problems : \left \_ = \left \_, with F_n:X_n \ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computational Magnetohydrodynamics
Computational magnetohydrodynamics (CMHD) is a rapidly developing branch of magnetohydrodynamics that uses numerical methods and algorithms to solve and analyze problems that involve electrically conducting fluids. Most of the methods used in CMHD are borrowed from the well established techniques employed in Computational fluid dynamics. The complexity mainly arises due to the presence of a magnetic field and its coupling with the fluid. One of the important issues is to numerically maintain the \nabla \cdot = 0 (conservation of magnetic flux) condition, from Maxwell's equations, to avoid the presence of unrealistic effects, namely magnetic monopoles, in the solutions. Open-source MHD software * Pencil CodeCompressible resistive MHD, intrinsically divergence free, embedded particles module, finite-difference explicit scheme, high-order derivatives, Fortran95 and C, parallelized up to hundreds of thousands coresSource codeis available.br> RAMSES is an open source program to mode ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Fluid Dynamics
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid ( liquids and gases) with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests. CFD is applie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Godunov's Scheme
In numerical analysis and computational fluid dynamics, Godunov's scheme is a conservative numerical scheme, suggested by S. K. Godunov in 1959, for solving partial differential equations. One can think of this method as a conservative finite-volume method which solves exact, or approximate Riemann problems at each inter-cell boundary. In its basic form, Godunov's method is first order accurate in both space and time, yet can be used as a base scheme for developing higher-order methods. Basic scheme Following the classical finite-volume method framework, we seek to track a finite set of discrete unknowns, : Q^_i = \frac \int_ ^ q(t^n, x)\, dx where the x_ = x_ + \left( i - 1/2 \right) \Delta x and t^n = n \Delta t form a discrete set of points for the hyperbolic problem: : q_t + ( f( q ) )_x = 0, where the indices t and x indicate the derivations in time and space, respectively. If we integrate the hyperbolic problem over a control volume _, x_ we obtain a m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hiroaki Nishikawa
Hiroaki is a masculine Japanese given name in modern times consist of a family name (surname) followed by a given name, in that order. Nevertheless, when a Japanese name is written in the Roman alphabet, ever since the Meiji era, the official policy has been to cater to Western expecta .... It can be written in many ways. In the following lists, the kanji in parentheses are the individual's way of writing the name Hiroaki. Possible writings *(written: , , , , , , , , , , , , , , , , , , , , , , , , , or ) People with the name *, Japanese admiral *, Japanese businessman *, Japanese volleyball player *, Japanese hammer thrower *, Japanese diplomat *, Japanese anime director and screenwriter *, Japanese serial killer *, Japanese prince *, Japanese judoka *, Japanese footballer *, Japanese voice actor *, Japanese racing driver *, Japanese modern pentathlete *, Japanese footballer *, Japanese scientist *, Japanese footballer *, Japanese snowboarder *, Japanese baseball player *, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bram Van Leer
Bram van Leer is Arthur B. Modine Emeritus Professor of aerospace engineering at the University of Michigan, in Ann Arbor. He specializes in ''Computational fluid dynamics (CFD)'', ''fluid dynamics'', and ''numerical analysis.'' His most influential work lies in CFD, a field he helped modernize from 1970 onwards. An appraisal of his early work has been given by C. Hirsch (1979) An astrophysicist by education, van Leer made lasting contributions to CFD in his five-part article series “Towards the Ultimate Conservative Difference Scheme (1972-1979),” where he extended Godunov's finite-volume scheme to the second order (MUSCL). Also in the series, he developed non-oscillatory interpolation using limiters, an approximate Riemann solver, and discontinuous-Galerkin schemes for unsteady advection. Since joining the University of Michigan's Aerospace Engineering Department (1986), he has worked on convergence acceleration by local preconditioning and multigrid relaxation for Euler an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ami Harten
Amiram Harten (1946 – 1994) was an American/ Israeli applied mathematician. Harten made fundamental contribution to the development of high-resolution schemes for the solution of hyperbolic partial differential equations. Among other contributions, he developed the total variation diminishing scheme, which gives an oscillation free solution for flow with shocks. In 1980s, Harten along with Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy developed the essentially non-oscillatory (ENO) schemes. The article on ENO, titled, ''Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III'' was published in Journal of Computational Physics, in 1987 and is one of the most cited papers in the field of scientific computing Computational science, also known as scientific computing or scientific computation (SC), is a field in mathematics that uses advanced computing capabilities to understand and solve complex problems. It is an area of science that spans ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann Problem
A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest. The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations. In numerical analysis, Riemann problems appear in a natural way in finite volume methods for the solution of conservation law equations due to the discreteness of the grid. For that it is widely used in computational fluid dynamics and in computational magnetohydrodynamics simulations. In these fields, Riemann problems are calculated using Riemann solvers. The Riemann problem in linearized gas dynamics As a simple example, we investigate the properties o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Philip L
Philip, also Phillip, is a male given name, derived from the Greek (''Philippos'', lit. "horse-loving" or "fond of horses"), from a compound of (''philos'', "dear", "loved", "loving") and (''hippos'', "horse"). Prominent Philips who popularized the name include kings of Macedonia and one of the apostles of early Christianity. ''Philip'' has many alternative spellings. One derivation often used as a surname is Phillips. It was also found during ancient Greek times with two Ps as Philippides and Philippos. It has many diminutive (or even hypocoristic) forms including Phil, Philly, Lip, Pip, Pep or Peps. There are also feminine forms such as Philippine and Philippa. Antiquity Kings of Macedon * Philip I of Macedon * Philip II of Macedon, father of Alexander the Great * Philip III of Macedon, half-brother of Alexander the Great * Philip IV of Macedon * Philip V of Macedon New Testament * Philip the Apostle * Philip the Evangelist Others * Philippus of Croton (c. 6th cent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sergei K
Sergius is a male given name of Ancient Roman origin after the name of the Latin ''gens'' Sergia or Sergii of regal and republican ages. It is a common Christian name, in honor of Saint Sergius, or in Russia, of Saint Sergius of Radonezh, and has been the name of four popes. It has given rise to numerous variants, present today mainly in the Romance (Serge, Sergio, Sergi) and Slavic languages (Serhii, Sergey, Serguei). It is not common in English, although the Anglo-French name Sergeant is possibly related to it. Etymology The name originates from the Roman ''nomen'' (patrician family name) ''Sergius'', after the name of the Roman ''gens'' of Latin origins Sergia or Sergii from Alba Longa, Old Latium, counted by Theodor Mommsen as one of the oldest Roman families, one of the original 100 ''gentes originarie''. It has been speculated to derive from a more ancient Etruscan name but the etymology of the nomen Sergius is problematic. Chase hesitantly suggests a connection with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]