Riemann
   HOME



picture info

Riemann
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenberg in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named. The Riemann hypothesis and some of its generalizations, along with Goldbach's conjecture and the twin prime conjecture, make up Hilbert's eighth problem in David Hilbert's list of twenty-three unsolved problems; it is also one of the Millennium Prize Problems of the Clay Mathematics Institute, which offers US$1 million for a solution to any of them. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields. The Riemann zeta function ''ζ''(''s'') is a function whose argument ''s'' may be any complex numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Integral
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo integration. Overview Imagine you have a curve on a graph, and the curve stays above the x-axis between two points, a and b. The area under that curve, from a to b, is what we want to figure out. This area can be described as the set of all points (x, y) on the graph that follow these rules: a ≤ x ≤ b (the x-coordinate is between a and b) and 0 < y < f(x) (the y-coordinate is between 0 and the height of the curve f(x)). Mathematically, this region can be expressed in
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. Examples of Riemann surfaces include Graph of a function, graphs of Multivalued function, multivalued functions such as √''z'' or log(''z''), e.g. the subset of pairs with . Every Riemann surface is a Surface (topology), surface: a two-dimensional real manifold, but it contains more structure (specifically a Complex Manifold, complex structure). Conversely, a two-dimensional real manifold can be turned into a Riemann surface (usually in several inequivalent ways) if and only if it is orientable and Metrizabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Topics Named After Bernhard Riemann
The German mathematician Bernhard Riemann (1826–1866) is the eponym of many things. "Riemann" (by field) * Riemann bilinear relations * Riemann conditions * Riemann form * Riemann function * Riemann–Hurwitz formula * Riemann matrix * Riemann operator * Riemann singularity theorem ** Riemann-Kempf singularity theorem *Riemann surface ** Compact Riemann surface ** Planar Riemann surface * Cauchy–Riemann manifold ** The tangential Cauchy–Riemann complex *Zariski–Riemann space Analysis *Cauchy–Riemann equations *Riemann integral ** Generalized Riemann integral ** Riemann multiple integral * Riemann invariant *Riemann mapping theorem ** Measurable Riemann mapping theorem *Riemann problem *Riemann solver *Riemann sphere *Riemann–Hilbert correspondence * Riemann–Hilbert problem * Riemann–Lebesgue lemma *Riemann–Liouville integral *Riemann–Roch theorem ** Arithmetic Riemann–Roch theorem ** Riemann–Roch theorem for smooth manifolds ** Riemann–Roch theorem for su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smoothly from point to point). This gives, in particular, local notions of angle, arc length, length of curves, surface area and volume. From those, some other global quantities can be derived by integral, integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "" ("On the Hypotheses on which Geometry is Based"). It is a very broad and abstract generalization of the differential geometry of surfaces in Three-dimensional space, R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. * Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime-counting Function
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number . It is denoted by (unrelated to the number ). A symmetric variant seen sometimes is , which is equal to if is exactly a prime number, and equal to otherwise. That is, the number of prime numbers less than , plus half if equals a prime. Growth rate Of great interest in number theory is the growth rate of the prime-counting function. It was conjectured in the end of the 18th century by Gauss and by Legendre to be approximately \frac where is the natural logarithm, in the sense that \lim_ \frac=1. This statement is the prime number theorem. An equivalent statement is \lim_\frac=1 where is the logarithmic integral function. The prime number theorem was first proved in 1896 by Jacques Hadamard and by Charles de la Vallée Poussin independently, using properties of the Riemann zeta function introduced by Riemann in 1859. Proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


On The Number Of Primes Less Than A Given Magnitude
" die Anzahl der Primzahlen unter einer gegebenen " (usual English translation: "On the Number of Primes Less Than a Given Magnitude") is a seminal 9-page paper by Bernhard Riemann published in the November 1859 edition of the ''Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin''. Overview This paper studies the prime-counting function using analytic methods. Although it is the only paper Riemann ever published on number theory, it contains ideas which influenced thousands of researchers during the late 19th century and up to the present day. The paper consists primarily of definitions, heuristic arguments, sketches of proofs, and the application of powerful analytic methods; all of these have become essential concepts and tools of modern analytic number theory. Among the new definitions, ideas, and notation introduced: *The use of the Greek letter zeta (ζ) for a function previously mentioned by Euler *The analytic continuation of this zeta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Real Analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability. Real analysis is distinguished from complex analysis, which deals with the study of complex numbers and their functions. Scope Construction of the real numbers The theorems of real analysis rely on the properties of the (established) real number system. The real number system consists of an uncountable set (\mathbb), together with two binary operations denoted and \cdot, and a total order denoted . The operations make the real numbers a field, and, along with the order, an ordered field. The real number system is the unique '' complete ordered field'', in the sense that any other complete ordered field is isomorphic to it. Intuitively, completenes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Series
A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always Convergent series, converge. Well-behaved functions, for example Smoothness, smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]