Reeb Stability Theorem
In mathematics, Reeb stability theorem, named after Georges Reeb, asserts that if one leaf of a codimension-one foliation is closed and has finite fundamental group, then all the leaves are closed and have finite fundamental group. Reeb local stability theorem Theorem: ''Let F be a C^1, codimension k foliation of a manifold M and L a compact leaf with finite holonomy group. There exists a neighborhood U of L, saturated in F (also called invariant), in which all the leaves are compact with finite holonomy groups. Further, we can define a retraction \pi: U\to L such that, for every leaf L'\subset U, \pi, _:L'\to L is a covering map with a finite number of sheets and, for each y\in L, \pi^(y) is homeomorphic to a disk of dimension k and is transverse to F. The neighborhood U can be taken to be arbitrarily small.'' The last statement means in particular that, in a neighborhood of the point corresponding to a compact leaf with finite holonomy, the space of leaves is Hausdorff. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poincaré–Bendixson Theorem
In mathematics, the Poincaré–Bendixson theorem is a statement about the long-term behaviour of orbits of continuous dynamical systems on the plane, cylinder, or two-sphere. Theorem Given a differentiable real dynamical system defined on an open subset of the plane, every non-empty compact ''ω''-limit set of an orbit, which contains only finitely many fixed points, is either * a fixed point, * a periodic orbit, or * a connected set composed of a finite number of fixed points together with homoclinic and heteroclinic orbits connecting these. Moreover, there is at most one orbit connecting different fixed points in the same direction. However, there could be countably many homoclinic orbits connecting one fixed point. Discussion A weaker version of the theorem was originally conceived by , although he lacked a complete proof which was later given by . Continuous dynamical systems that are defined on two-dimensional manifolds other than the plane (or cylinder or two-s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connectedness
In mathematics, connectedness is used to refer to various properties meaning, in some sense, "all one piece". When a mathematical object has such a property, we say it is connected; otherwise it is disconnected. When a disconnected object can be split naturally into connected pieces, each piece is usually called a ''component'' (or ''connected component''). Connectedness in topology A topological space is said to be ''connected space, connected'' if it is not the union of two disjoint sets, disjoint nonempty open sets. A Set (mathematics), set is open if it contains no point lying on its boundary (topology), boundary; thus, in an informal, intuitive sense, the fact that a space can be partitioned into disjoint open sets suggests that the boundary between the two sets is not part of the space, and thus splits it into two separate pieces. Other notions of connectedness Fields of mathematics are typically concerned with special kinds of objects. Often such an object is said to be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conformal Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a Riemannian manifold (or pseudo-Riemannian manifold) equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal fa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Metric Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots of elements from X of a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d(x_m, x_n) < r. Complete space A metric space is complete if any of the following equivalent conditions are satisfied: #Every Cauchy seq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reeb Sphere Theorem
In mathematics, Reeb sphere theorem, named after Georges Reeb, states that : A closed oriented connected manifold ''M'' ''n'' that admits a singular foliation having only centers is homeomorphic to the sphere ''S''''n'' and the foliation has exactly two singularities. Morse foliation A singularity of a foliation ''F'' is of Morse type if in its small neighborhood all leaves of the foliation are level sets of a Morse function, being the singularity a critical point of the function. The singularity is a center if it is a local extremum of the function; otherwise, the singularity is a saddle. The number of centers ''c'' and the number of saddles s, specifically c-s, is tightly connected with the manifold topology. We denote \operatorname p = \min(k,n-k), the index of a singularity p, where ''k'' is the index of the corresponding critical point of a Morse function. In particular, a center has index 0, index of a saddle is at least 1. A Morse foliation ''F'' on a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boundary (topology)
In topology and mathematics in general, the boundary of a subset of a topological space is the set of points in the Closure (topology), closure of not belonging to the Interior (topology), interior of . An element of the boundary of is called a boundary point of . The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set include \operatorname(S), \operatorname(S), and \partial S. Some authors (for example Willard, in ''General Topology'') use the term frontier instead of boundary in an attempt to avoid confusion with a Manifold#Manifold with boundary, different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, ''Metric Spaces'' by E. T. Copson uses the term boundary to refer to Felix Hausdorff, Hausdorff's border, which is defined as the intersection ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tangent Space
In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold. Informal description In differential geometry, one can attach to every point x of a differentiable manifold a ''tangent space''—a real vector space that intuitively contains the possible directions in which one can tangentially pass through x . The elements of the tangent space at x are called the ''tangent vectors'' at x . This is a generalization of the notion of a vector, based at a given initial point, in a Euclidean space. The dimension of the tangent space at every point of a connected manifold is the same as that of the manifold itself. For example, if the given manifold is a 2 -sphere, then one can picture the tangent space at a point ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fiber (mathematics)
In mathematics, the fiber (American English, US English) or fibre (British English) of an element (mathematics), element y under a function (mathematics), function f is the preimage of the singleton (mathematics), singleton set \, that is :f^(y) = \. Properties and applications In elementary set theory If X and Y are the domain of a function, domain and image of a function, image of f, respectively, then the fibers of f are the sets in :\left\\quad=\quad \left\ which is a partition (mathematics), partition of the domain set X. Note that y must be restricted to the image set Y of f, since otherwise f^(y) would be the empty set which is not allowed in a partition. The fiber containing an element x\in X is the set f^(f(x)). For example, let f be the function from \R^2 to \R that sends point (a,b) to a+b. The fiber of 5 under f are all the points on the straight line with equation (mathematics), equation a+b=5. The fibers of f are that line and all the straight lines parallel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in Postnikov systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation: Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called base ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fiber Bundle
In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the '' trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a manifol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |