Quotient Rule
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h(x)=f(x)/g(x), where both and are differentiable and g(x)\neq 0. The quotient rule states that the derivative of is :h'(x) = \frac. It is provable in many ways by using other derivative rules. Examples Example 1: Basic example Given h(x)=\frac, let f(x)=e^x, g(x)=x^2, then using the quotient rule:\begin \frac \left(\frac\right) &= \frac \\ &= \frac \\ &= \frac \\ &= \frac \\ &= \frac. \end Example 2: Derivatives of tangent and cotangent functions The quotient rule can be used to find the derivative of \tan x = \frac as follows:\begin \frac \tan x &= \frac \left(\frac\right) \\ &= \frac \\ &= \frac \\ &= \frac \\ &= \frac = \sec^2 x. \endSimilarly, the derivative of \cot x = \frac can be obtained as follows:\begin \frac \cot x &= \frac \left(\frac\right) \\ &= \frac \\ &= \f ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. It has two major branches, differential calculus and integral calculus; the former concerns instantaneous rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a welldefined limit. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including codifying the idea of limits, put these developments on a more solid conceptual footing. Today, calculus has widespread uses in scienc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the de ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians AlBiruni and Sharaf alDin alTusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Brooks/Cole
Cengage Group is an American educational content, technology, and services company for the higher education, K12, professional, and library markets. It operates in more than 20 countries around the world.(Jun 27, 2014Global Publishing Leaders 2014: Cengage publishersweekly.comCompany Info  Wall Street JournalCengage LearningCompany Overview of Cengage Learning, Inc. BloombergBusiness Company information The company is headquartered in Boston, Massachusetts, and has approximately 5,000 employees worldwide across nearly 38 countries. It was headquartered at its Stamford, Connecticut, office until April 2014. 

AddisonWesley
AddisonWesley is an American publisher of textbooks and computer literature. It is an imprint of Pearson PLC, a global publishing and education company. In addition to publishing books, AddisonWesley also distributes its technical titles through the O'Reilly Online Learning ereference service. AddisonWesley's majority of sales derive from the United States (55%) and Europe (22%). The AddisonWesley Professional Imprint produces content including books, eBooks, and video for the professional IT worker including developers, programmers, managers, system administrators. Classic titles include ''The Art of Computer Programming'', ''The C++ Programming Language'', ''The Mythical ManMonth'', and ''Design Patterns''. History Lew Addison Cummings and Melbourne Wesley Cummings founded AddisonWesley in 1942, with the first book published by AddisonWesley being Massachusetts Institute of Technology professor Francis Weston Sears' ''Mechanics''. Its first computer book was ''Prog ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Differentiation Rules
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus. Elementary rules of differentiation Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C). Constant term rule For any value of c, where c \in \mathbb, if f(x) is the constant function given by f(x) = c, then \frac = 0. Proof Let c \in \mathbb and f(x) = c. By the definition of the derivative, :\begin f'(x) &= \lim_\frac \\ &= \lim_ \frac \\ &= \lim_ \frac \\ &= \lim_ 0 \\ &= 0 \end This shows that the derivative of any constant function is 0. Differentiation is linear For any functions f and g and any real numbers a and b, the derivative of the function h(x) = af(x) + bg(x) with respect to x is: h'(x) = a f'(x) + b g'(x). In Leibniz's notation this is written as: \frac = a\frac +b\ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Product Rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + u \cdot v' or in Leibniz's notation as \frac (u\cdot v) = \frac \cdot v + u \cdot \frac. The rule may be extended or generalized to products of three or more functions, to a rule for higherorder derivatives of a product, and to other contexts. Discovery Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials. (However, J. M. Child, a translator of Leibniz's papers, argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let ''u''(''x'') and ''v''(''x'') be two differentiable functions of ''x''. Then the differential of ''uv'' is : \begin d(u\cdot v) & = (u + du)\cdot (v + dv)  u\cdot v \\ & = u\cdot dv + v\cdot du + du\cdot dv. \end Since the term ''du''·''dv'' is "negli ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Reciprocal Rule
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function ''f'' in terms of the derivative of ''f''. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents. Also, one can readily deduce the quotient rule from the reciprocal rule and the product rule. The reciprocal rule states that if ''f'' is differentiable at a point ''x'' and ''f''(''x'') ≠ 0 then g(''x'') = 1/''f''(''x'') is also differentiable at ''x'' and g'(x) = \frac \left(\frac \right) = \frac. Proof This proof relies on the premise that f is differentiable at x, and on the theorem that f is then also necessarily continuous there. Applying the definition of the derivative of g at x with f(x) \ne 0 gives \begin g'(x) = \frac d \left(\frac \right) & = \lim_ \left (\frac \right )\\ & = \lim_ \left( \frac \right)\\ & = \lim_ \left(  \frac \cdot \frac 1 \right).\end The limit o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Power Rule
In calculus, the power rule is used to differentiate functions of the form f(x) = x^r, whenever r is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's derivatives. Statement of the power rule Let f be a function satisfying f(x)=x^r for all x, where r \in \mathbb. Then, :f'(x) = rx^ \, . The power rule for integration states that :\int\! x^r \, dx=\frac+C for any real number r \neq 1. It can be derived by inverting the power rule for differentiation. In this equation C is any constant. Proofs Proof for real exponents To start, we should choose a working definition of the value of f(x) = x^r, where r is any real number. Although it is feasible to define the value as the limit of a sequence of rational powers that approach the irrational power whenever we encounter such a power, or ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Chain Rule
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , then the chain rule is, in Lagrange's notation, :h'(x) = f'(g(x)) g'(x). or, equivalently, :h'=(f\circ g)'=(f'\circ g)\cdot g'. The chain rule may also be expressed in Leibniz's notation. If a variable depends on the variable , which itself depends on the variable (that is, and are dependent variables), then depends on as well, via the intermediate variable . In this case, the chain rule is expressed as :\frac = \frac \cdot \frac, and : \left.\frac\_ = \left.\frac\_ \cdot \left. \frac\_ , for indicating at which points the derivatives have to be evaluated. In integration, the counterpart to the chain rule is the substitution rule. Intuitive explanation Intuitively, the chain rule states that knowing the instantaneous rate of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Natural Logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if the base is implicit, simply . Parentheses are sometimes added for clarity, giving , , or . This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity. The natural logarithm of is the power to which would have to be raised to equal . For example, is , because . The natural logarithm of itself, , is , because , while the natural logarithm of is , since . The natural logarithm can be defined for any positive real number as the area under the curve from to (with the area being negative when ). The simplicity of this definition, which is matched in many other formulas involving the natural logarithm, leads to the term "natural". The definition of the natural logarithm can the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Logarithmic Derivative
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function ''f'' is defined by the formula \frac where f' is the derivative of ''f''. Intuitively, this is the infinitesimal relative change in ''f''; that is, the infinitesimal absolute change in ''f,'' namely f', scaled by the current value of ''f.'' When ''f'' is a function ''f''(''x'') of a real variable ''x'', and takes real, strictly positive values, this is equal to the derivative of ln(''f''), or the natural logarithm of ''f''. This follows directly from the chain rule: \frac\ln f(x) = \frac \frac Basic properties Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does ''not'' take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have (\log uv)' = (\log u + \log v)' = (\log u)' + (\log v)' . So for positiverealvalued functions, the logarithmic d ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 