HOME





Quantum No-deleting Theorem
In physics, the no-deleting theorem of quantum information science, quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies. It is a time-reversed dual (category theory), dual to the no-cloning theorem, which states that arbitrary states cannot be copied. It was proved by Arun K. Pati and Samuel L. Braunstein. Intuitively, it is because information is conserved under unitary evolution. This theorem seems remarkable, because, in many senses, quantum states are fragile; the theorem asserts that, in a particular case, they are also robust. The no-deleting theorem, together with the no-cloning theorem, underpin the interpretation of quantum mechanics in terms of category theory, and, in particular, as a dagger symmetric monoidal category. This formulation, known as categorical quantum mechanics, in turn allows a connection to be made from quantum mechanics to linear logi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Qubits
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states (left-handed and the right-handed circular polarization) can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknowledgmen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Information Science
Quantum information science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information. Scientific and engineering studies Quantum teleportation, Quantum entanglement, entanglement and the manufacturing of quantum computers depend on a comprehensive understanding of quantum physics and engineering. Google and IBM have invested significantly in quantum computer hardware research, leading to significant progress in manufacturing quantum computers since the 2010s. Currently, it is possible to create a quantum computer with over 100 qub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Landauer's Principle
Landauer's principle is a physical principle pertaining to a lower theoretical limit of energy consumption of computation. It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings.. It is hypothesized that energy consumption below this lower bound would require the development of reversible computing. The principle was first proposed by Rolf Landauer in 1961. Statement Landauer's principle states that the minimum energy needed to erase one bit of information is proportional to the temperature at which the system is operating. Specifically, the energy needed for this computational task is given by :E \geq k_\text T \ln 2, where k_\text is the Boltzmann constant and T is the temperature in Kelvin. At room temperature, the Landauer limit represents an energy of approximately . , modern computers use about a billion times as much energy per operation. History Rolf Lan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uncertainty Principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known. More formally, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the product of the accuracy of certain related pairs of measurements on a quantum system, such as position, ''x'', and momentum, ''p''. Such paired-variables are known as complementary variables or canonically conjugate variables. First introduced in 1927 by German physicist Werner Heisenberg, the formal inequality relating the standard deviation of position ''σx'' and the standard deviation of momentum ''σp'' was derived by Earle Hesse Kennard later that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Teleportation
Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light. One of the first scientific articles to investigate quantum teleportation is "Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels" published by Charles H. Bennett (physicist), C. H. Bennett, Gilles Brassard, G. Brassard, Claude Crépeau, C. Crépeau, Richard Jozsa, R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Information
Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term. It is an interdisciplinary field that involves quantum mechanics, computer science, information theory, philosophy and cryptography among other fields. Its study is also relevant to disciplines such as cognitive science, psychology and neuroscience. Its main focus is in extracting information from matter at the microscopic scale. Observation in science is one of the most important ways of acquiring information and measurement is required in order to quantify the observation, making this crucial to the scientific method. In quantum mechanics, due to the uncertainty principle, non-commuting observables cannot be precisely measured simultaneously, as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon where the quantum state of each Subatomic particle, particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical physics and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurement#Quantum mechanics, Measurements of physical properties such as position (vector), position, momentum, Spin (physics), spin, and polarization (waves), polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Cloning
Quantum cloning is a process that takes an arbitrary, unknown quantum state and makes an exact copy without altering the original state in any way. Quantum cloning is forbidden by the laws of quantum mechanics as shown by the no cloning theorem, which states that there is no operation for cloning any arbitrary state perfectly. In Dirac notation, the process of quantum cloning is described by: , where is the actual cloning operation, is the state to be cloned, and is the initial state of the copy. Though perfect quantum cloning is not possible, it is possible to perform imperfect cloning, where the copies have a non-unit (i.e. non-perfect) fidelity. The possibility of approximate quantum copying was first addressed by Buzek and Hillery, and theoretical bounds were derived on the fidelity of cloned quantum states. One of the applications of quantum cloning is to analyse the security of quantum key distribution protocols. Teleportation, nuclear magnetic resonance, quantum am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


No-hiding Theorem
The no-hiding theorem states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in the black hole information paradox and in fact any process that tends to lose information completely. The no-hiding theorem is robust to imperfection in the physical process that seemingly destroys the original information. This was proved by Samuel L. Braunstein and Arun K. Pati in 2007. In 2011, the no-hiding theorem was experimentally tested using nuclear magnetic resonance devices where a single qubit undergoes complete randomization; i.e., a pure state transforms to a random mixed state. Subsequently, the lost information has been recovered from the ancilla qubits using suitable local unitary transformation only in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


No-communication Theorem
In physics, the no-communication theorem (also referred to as the no-signaling principle) is a no-go theorem in quantum information theory. It asserts that during the measurement of an entangled quantum state, it is impossible for one observer to transmit information to another observer, regardless of their spatial separation. This conclusion preserves the principle of causality in quantum mechanics and ensures that information transfer does not violate special relativity by exceeding the speed of light. The theorem is significant because quantum entanglement creates correlations between distant events that might initially appear to enable faster-than-light communication. The no-communication theorem establishes conditions under which such transmission is impossible, thus resolving paradoxes like the Einstein-Podolsky-Rosen (EPR) paradox and addressing the violations of local realism observed in Bell's theorem. Specifically, it demonstrates that the failure of local realism doe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


No-cloning Theorem
In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computer, quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James L. Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist (the same result would be independently derived in 1982 by William Wootters and Wojciech H. Zurek as well as Dennis Dieks the same year). The aforementioned theorems do not preclude the state of one system becoming quantum entanglement, entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Hadamard transform#Quantum computing applications, Walsh–Hadamard gate to entangle two qubits without violating the no-cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]