Quantum Inequalities
Quantum inequalities are local constraints on the magnitude and extent of distributions of negative energy density in space-time. Initially conceived to clear up a long-standing problem in quantum field theory (namely, the potential for unconstrained negative energy density at a point), quantum inequalities have proven to have a diverse range of applications. The form of the quantum inequalities is reminiscent of the uncertainty principle. Energy conditions in classical field theory Einstein's theory of General Relativity amounts to a description of the relationship between the curvature of space-time, on the one hand, and the distribution of matter throughout space-time on the other. This precise details of this relationship are determined by the Einstein equations G_=\kappa T_. Here, the Einstein tensor G_ describes the curvature of space-time, whilst the energy–momentum tensor T_ describes the local distribution of matter. (\kappa is a constant.) The Einstein equations exp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uncertainty Principle
In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, ''x'', and momentum, ''p'', can be predicted from initial conditions. Such variable pairs are known as complementary variables or canonically conjugate variables; and, depending on interpretation, the uncertainty principle limits to what extent such conjugate properties maintain their approximate meaning, as the mathematical framework of quantum physics does not support the notion of simultaneously well-defined conjugate properties expressed by a single value. The uncertainty principle implies that it is in general not possible to predict the value of a quantity with arbitrary certainty, even if all initial conditions are specified. Introduced first in 1927 by the German physicist Wern ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Einstein Field Equations
In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form of a tensor equation which related the local ' (expressed by the Einstein tensor) with the local energy, momentum and stress within that spacetime (expressed by the stress–energy tensor). Analogously to the way that electromagnetic fields are related to the distribution of charges and currents via Maxwell's equations, the EFE relate the spacetime geometry to the distribution of mass–energy, momentum and stress, that is, they determine the metric tensor of spacetime for a given arrangement of stress–energy–momentum in the spacetime. The relationship between the metric tensor and the Einstein tensor allows the EFE to be written as a set of nonlinear partial differential equations when used in this way. The solutions of the EF ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Energy–momentum Tensor
{{dab ...
Energy–momentum may refer to: * Four-momentum *Stress–energy tensor *Energy–momentum relation In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Energy Condition
In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically-phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions. Energy conditions are not physical constraints , but are rather mathematically imposed boundary conditions that attempt to capture a belief that "energy should be positive". Many energy conditions are known to not correspond to physical reality—for example, the observable effects of dark energy are well-known to violate the strong energy condition. In general relativity, energy conditions are often used (and required) in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory in quantum mechanics. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its devel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Time
In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval between two events on a world line is the change in proper time. This interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line. The proper time interval between two events depends not only on the events, but also the world line connecting them, and hence on the motion of the clock between the events. It is expressed as an integral over the world line (analogous to arc length in Euclidean space). An accelerated clock will measure a smaller elapsed time between two events than that measured by a non-accelerated (inertial) clock between the same two events. The twin paradox is an example of this effect. By conventi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Energy Condition
In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically-phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions. Energy conditions are not physical constraints , but are rather mathematically imposed boundary conditions that attempt to capture a belief that "energy should be positive". Many energy conditions are known to not correspond to physical reality—for example, the observable effects of dark energy are well-known to violate the strong energy condition. In general relativity, energy conditions are often used (and required) in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exotic Matter
There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have "exotic" physical properties that would violate known laws of physics, such as a particle having a negative mass. * Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist. * Several particles whose existence has been experimentally confirmed that are conjectured to be exotic hadrons and within the Standard Model. * States of matter that are not commonly encountered, such as Bose–Einstein condensates, fermionic condensates, nuclear matter, quantum spin liquid, string-net liquid, supercritical fluid, color-glass condensate, quark–gluon plasma, Rydberg matter, Rydberg polaron, photonic matter, and time crystal but whose properties are entirely within the realm of mainstream physics. * Forms of matter that are poorly understood, such as dark matter and mirror ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alcubierre Drive
The Alcubierre drive () is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum (that is, negative mass) could be created. Proposed by theoretical physicist Miguel Alcubierre in 1994, the Alcubierre drive is based on a solution of Einstein's field equations. Since those solutions are metric tensors, the Alcubierre drive is also referred to as Alcubierre metric. Objects cannot accelerate to the speed of light within normal spacetime; instead, the Alcubierre drive shifts space around an object so that the object would arrive at its destination more quickly than light would in normal space without breaking any physical laws. Although the metric proposed by Alcubierre is consistent with the Einstein field equations, construction of such a drive is not necessarily poss ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Warp Drive
A warp drive or a drive enabling space warp is a fictional superluminal spacecraft propulsion system in many science fiction works, most notably ''Star Trek'', and a subject of ongoing physics research. The general concept of "warp drive" was introduced by John W. Campbell in his 1957 novel ''Islands of Space'' and was popularized by the ''Star Trek'' series. Its closest real-life equivalent is the Alcubierre drive, a theoretical solution of the field equations of general relativity. History and characteristics Warp drive, or a drive enabling space warp, is one of several ways of travelling through space found in science fiction. It has been often discussed as being conceptually similar to hyperspace. A warp drive is a device that distorts the shape of the space-time continuum. A spacecraft equipped with a warp drive may travel at speeds greater than that of light by many orders of magnitude. In contrast to some other fictitious faster-than-light technologies such as a jump ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of York
, mottoeng = On the threshold of wisdom , established = , type = Public research university , endowment = £8.0 million , budget = £403.6 million , chancellor = Heather Melville , vice_chancellor = Charlie Jeffery , students = () , undergrad = () , postgrad = () , city = Heslington, York , country = England , campus = Heslington West, Heslington East, and King's Manor , colours = Dark blue and dark green , website = , logo = UoY_logo_with_shield_2016.png , logo_size = 250px , administrative_staff = 3,091 , affiliations = The University of York (abbreviated as or ''York'' for post-nominals) is a collegiate research university, located in the city of York, England. Established in 1963, the university has expanded to more than thirty departments and centres, covering a wide range of subjects. Situated to the south-east of the city of York, the university campus is about in size. The original campus, Campus West, incorporates the York Sci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |