HOME
*





Primary Pseudoperfect Number
In mathematics, and particularly in number theory, ''N'' is a primary pseudoperfect number if it satisfies the Egyptian fraction equation :\frac + \sum_\frac = 1, where the sum is over only the prime divisors of ''N''. Properties Equivalently, ''N'' is a primary pseudoperfect number if it satisfies :1 + \sum_ \frac = N. Except for the primary pseudoperfect number ''N'' = 2, this expression gives a representation for ''N'' as the sum of distinct divisors of ''N''. Therefore, each primary pseudoperfect number ''N'' (except ''N'' = 2) is also pseudoperfect. The eight known primary pseudoperfect numbers are : 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086 . The first four of these numbers are one less than the corresponding numbers in Sylvester's sequence, but then the two sequences diverge. It is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Znám's Problem
In number theory, Znám's problem asks which sets of integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time. The initial terms of Sylvester's sequence almost solve this problem, except that the last chosen term equals one plus the product of the others, rather than being a proper divisor. showed that there is at least one solution to the (proper) Znám problem for each k\ge 5. Sun's solution is based on a recurrence similar to that for Sylvester's sequence, but with a different set of initial values. The Znám problem is closely related to Egyptian fractions. It is known that there are only finitely many solutions for any fixed k. It is unknown whether there are any solutions to Znám's problem using only odd numbers, and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematics Of Computation
''Mathematics of Computation'' is a bimonthly mathematics journal focused on computational mathematics. It was established in 1943 as ''Mathematical Tables and other Aids to Computation'', obtaining its current name in 1960. Articles older than five years are available electronically free of charge. Abstracting and indexing The journal is abstracted and indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... of 2.417. References External links * Delayed open access journals English-language journals Mathematics journals Publications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Association Of America
The Mathematical Association of America (MAA) is a professional society that focuses on mathematics accessible at the undergraduate level. Members include university, college, and high school teachers; graduate and undergraduate students; pure and applied mathematicians; computer scientists; statisticians; and many others in academia, government, business, and industry. The MAA was founded in 1915 and is headquartered at 1529 18th Street, Northwest in the Dupont Circle neighborhood of Washington, D.C. The organization publishes mathematics journals and books, including the ''American Mathematical Monthly'' (established in 1894 by Benjamin Finkel), the most widely read mathematics journal in the world according to records on JSTOR. Mission and Vision The mission of the MAA is to advance the understanding of mathematics and its impact on our world. We envision a society that values the power and beauty of mathematics and fully realizes its potential to promote human flourishi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The College Mathematics Journal
The ''College Mathematics Journal'' is an expository magazine aimed at teachers of college mathematics, particular those teaching the first two years. It is published by Taylor & Francis on behalf of the Mathematical Association of America and is a continuation of ''Two-Year College Mathematics Journal''. It covers all aspects of mathematics. It publishes articles intended to enhance undergraduate instruction and classroom learning, including expository articles, short notes, problems, and "mathematical ephemera" such as fallacious proofs, quotations, cartoons, poetry, and humor. Paid circulation in 2008 was 9,000 and total circulation was 9,500. The MAA gives the George Pólya Awards annually "for articles of expository excellence" published in the ''College Mathematics Journal''. References External links *''The College Mathematics Journal''at JSTOR''The College Mathematics Journal''at Taylor & Francis Taylor & Francis Group is an international company originating i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Giuga Number
A Giuga number is a composite number ''n'' such that for each of its distinct prime factors ''p''''i'' we have p_i , \left( - 1\right), or equivalently such that for each of its distinct prime factors ''p''''i'' we have p_i^2 , (n - p_i). The Giuga numbers are named after the mathematician Giuseppe Giuga, and relate to his conjecture on primality. Definitions Alternative definition for a Giuga number due to Takashi Agoh is: a composite number ''n'' is a Giuga number if and only if the congruence :nB_ \equiv -1 \pmod n holds true, where ''B'' is a Bernoulli number and \varphi(n) is Euler's totient function. An equivalent formulation due to Giuseppe Giuga is: a composite number ''n'' is a Giuga number if and only if the congruence :\sum_^ i^ \equiv -1 \pmod n and if and only if :\sum_ \frac - \prod_ \frac \in \mathbb. All known Giuga numbers ''n'' in fact satisfy the stronger condition :\sum_ \frac - \prod_ \frac = 1. Examples The sequence of Giuga number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arithmetic Progression
An arithmetic progression or arithmetic sequence () is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a and the common difference of successive members is d, then the n-th term of the sequence (a_n) is given by: :a_n = a + (n - 1)d, If there are ''m'' terms in the AP, then a_m represents the last term which is given by: :a_m = a + (m - 1)d. A finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression. The sum of a finite arithmetic progression is called an arithmetic series. Sum Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modulo Operation
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is the remainder of the Euclidean division of by , where is the dividend and is the divisor. For example, the expression "5 mod 2" would evaluate to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0; there is nothing to subtract from 9 after multiplying 3 times 3. Although typically performed with and both being integers, many computing systems now allow other types of numeric operands. The range of values for an integer modulo operation of is 0 to inclusive ( mod 1 is always 0; is undefined, possibly resulting in a division by zero error in some programming languages). See Modular arithmetic for an older and r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]