HOME
*





Partition Of Unity
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval ,1such that for every point x\in X: * there is a neighbourhood of where all but a finite number of the functions of are 0, and * the sum of all the function values at is 1, i.e., \sum_ \rho(x) = 1. Partitions of unity are useful because they often allow one to extend local constructions to the whole space. They are also important in the interpolation of data, in signal processing, and the theory of spline functions. Existence The existence of partitions of unity assumes two distinct forms: # Given any open cover \_ of a space, there exists a partition \_ indexed ''over the same set'' such that supp \rho_i \subseteq U_i. Such a partition is said to be subordinate to the open cover \_i. # If the space is locally-compact, given any open cover \_ of a space, there exists a partition \_ indexed over a possibly distinct index set such that each has co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paracompact Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. Ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sobolev Space
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function. Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their importance comes from the fact that weak solutions of some important partial differential equations exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous functions with the derivatives understood in the classical sense. Motivation In this section and throughout the article \Omega is an open subset of \R^n. There are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernstein Polynomial
In the mathematical field of numerical analysis, a Bernstein polynomial is a polynomial that is a linear combination of Bernstein basis polynomials. The idea is named after Sergei Natanovich Bernstein. A numerically stable way to evaluate polynomials in Bernstein form is de Casteljau's algorithm. Polynomials in Bernstein form were first used by Bernstein in a constructive proof for the Weierstrass approximation theorem. With the advent of computer graphics, Bernstein polynomials, restricted to the interval , 1 became important in the form of Bézier curves. Definition The ''n''+1 Bernstein basis polynomials of degree ''n'' are defined as : b_(x) = \binom x^ \left( 1 - x \right)^, \quad \nu = 0, \ldots, n, where \tbinom is a binomial coefficient. So, for example, b_(x) = \tbinomx^2(1-x)^3 = 10x^2(1-x)^3. The first few Bernstein basis polynomials for blending 1, 2, 3 or 4 values together are: : \begin b_(x) & = 1, \\ b_(x) & = 1 - x, & b_(x) & = x \\ b_(x) & = (1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linkwitz–Riley Filter
A Linkwitz–Riley (L-R) filter is an infinite impulse response filter used in Linkwitz–Riley audio crossovers, named after its inventors Siegfried Linkwitz and Russ Riley. This filter type was originally described in ''Active Crossover Networks for Noncoincident Drivers'' in the Journal of the Audio Engineering Society. * It is also known as a ''Butterworth squared'' filter. A Linkwitz–Riley "L-R" crossover consists of a parallel combination of a low-pass and a high-pass L-R filter. The filters are usually designed by cascading two Butterworth filters, each of which has −3  dB gain at the cut-off frequency. The resulting Linkwitz–Riley filter has −6 dB gain at the cut-off frequency. This means that, upon summing the low-pass and high-pass outputs, the gain at the crossover frequency will be 0 dB, so the crossover behaves like an all-pass filter, having a flat amplitude response with a smoothly changing phase response. This is the biggest adva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Method Of Steepest Descent
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals. The integral to be estimated is often of the form :\int_Cf(z)e^\,dz, where ''C'' is a contour, and λ is large. One version of the method of steepest descent deforms the contour of integration ''C'' into a new path integration ''C′'' so that the following conditions hold: # ''C′'' passes through one or more zeros of the derivative ''g''′(''z''), # the imaginary part of ''g''(''z'') is constant on ''C′''. The method of steepest descent was first published by , who used it to estimate Bessel functions and pointed out that it occurred in the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Riemannian Metric
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz Riemannian metrics or measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to define several geometric notions on a Riemannian manifold, such as angle at an intersection, length of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Volume Form
In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold M of dimension n, a volume form is an n-form. It is an element of the space of sections of the line bundle \textstyle^n(T^*M), denoted as \Omega^n(M). A manifold admits a nowhere-vanishing volume form if and only if it is orientable. An orientable manifold has infinitely many volume forms, since multiplying a volume form by a function yields another volume form. On non-orientable manifolds, one may instead define the weaker notion of a density. A volume form provides a means to define the integral of a function on a differentiable manifold. In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a ''twisted volume form'' or ''pseudo-volume form''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bump Function
In mathematics, a bump function (also called a test function) is a function f: \R^n \to \R on a Euclidean space \R^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain \R^n forms a vector space, denoted \mathrm^\infty_0(\R^n) or \mathrm^\infty_\mathrm(\R^n). The dual space of this space endowed with a suitable topology is the space of distributions. Examples The function \Psi:\R \to \R given by \Psi(x) = \begin \exp\left( -\frac\right), & x \in (-1,1) \\ 0, & \text \end is an example of a bump function in one dimension. It is clear from the construction that this function has compact support, since a function of the real line has compact support if and only if it has bounded closed support. The proof of smoothness follows along the same lines as for the related function discussed in the Non-analytic smooth function article. This function can be interpreted as the Gaussian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''- tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Continuation
In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent. The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value). They may alternatively have to do with the presence of singularities. The case of several complex variables is rather different, since singularities then need not be isolated points, and its investigation was a major reason for the development of sheaf cohomology. Initial discussion Suppose ''f'' is an analytic function defined on a non-empty open subset ''U'' of the complex plane If ''V'' is a larger open subset of containing ''U'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Manifold
In mathematics, an analytic manifold, also known as a C^\omega manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic geometry, analytic spaces are a generalization of analytic manifolds such that singularities are permitted. For U \subseteq \R^n, the space of analytic functions, C^(U), consists of infinitely differentiable functions f:U \to \R , such that the Taylor series T_f(\mathbf) = \sum_\frac (\mathbf-\mathbf)^\alpha converges to f(\mathbf) in a neighborhood of \mathbf, for all \mathbf \in U. The requirement that the transition maps be analytic is significantly more restrictive than that they be infinitely differentiable; the analytic manifolds are a proper subset of the smooth, i.e. C^\infty, manifolds. There are many similarities between the theory of analytic and smooth manifolds, but a critical difference is that analytic manifolds do not ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]