Proper Length
Proper length or rest length is the length of an object in the object's rest frame. The measurement of lengths is more complicated in the theory of relativity than in classical mechanics. In classical mechanics, lengths are measured based on the assumption that the locations of all points involved are measured simultaneously. But in the theory of relativity, the notion of simultaneity is dependent on the observer. A different term, proper distance, provides an invariant measure whose value is the same for all observers. ''Proper distance'' is analogous to proper time. The difference is that the proper distance is defined between two spacelike-separated events (or along a spacelike path), while the proper time is defined between two timelike-separated events (or along a timelike path). Proper length or rest length The ''proper length'' or ''rest length'' of an object is the length of the object measured by an observer which is at rest relative to it, by applying standard ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rest Frame
In special relativity, the rest frame of a particle is the frame of reference (a coordinate system attached to physical markers) in which the particle is at rest. The rest frame of compound objects (such as a fluid, or a solid made of many vibrating atoms) is taken to be the frame of reference in which the average momentum of the particles which make up the substance is zero (the particles may individually have momentum, but collectively have no net momentum). The rest frame of a container of gas, for example, would be the rest frame of the container itself, in which the gas molecules are not at rest, but are no more likely to be traveling in one direction than another. The rest frame of a river would be the frame of an unpowered boat, in which the mean velocity of the water is zero. This frame is also called the center-of-mass frame, or center-of-momentum frame. The center-of-momentum frame is notable for being the reference frame in which the total energy (total relativistic ene ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Time
In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line. The proper time interval between two events depends not only on the events, but also the world line connecting them, and hence on the motion of the clock between the events. It is expressed as an integral over the world line (analogous to arc length in Euclidean space). An accelerated clock will measure a smaller elapsed time between two events than that measured by a non-accelerated ( inertial) clock between the same two events. The twin paradox is an example of this effect. By conventio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Invariant Interval
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive ''where'' and ''when'' events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and special theory of relativity. In 1908, Hermann Minkowski presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimensional continuum now known as Minkowski space. This interpretation proved vital to the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometrized Unit System
A geometrized unit system or geometrodynamic unit system is a system of natural units in which the base physical units are chosen so that the speed of light in vacuum, ''c'', and the gravitational constant, ''G'', are set equal to unity. : c = 1 \ : G = 1 \ The geometrized unit system is not a completely defined system. Some systems are geometrized unit systems in the sense that they set these, in addition to other constants, to unity, for example Stoney units and Planck units. This system is useful in physics, especially in the special and general theories of relativity. All physical quantities are identified with geometric quantities such as areas, lengths, dimensionless numbers, path curvatures, or sectional curvatures. Many equations in relativistic physics appear simpler when expressed in geometric units, because all occurrences of ''G'' and of ''c'' drop out. For example, the Schwarzschild radius of a nonrotating uncharged black hole with mass ''m'' becomes . For thi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Signature
In mathematics, the signature of a metric tensor ''g'' (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix of the metric tensor with respect to a basis. In relativistic physics, ''v'' conventionally represents the number of time or virtual dimensions, and ''p'' the number of space or physical dimensions. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis and thus can be used to classify the metric. It is denoted by three integers , where v is the number of positive eigenvalues, p is the number of negative ones and r is the number of zero eigenvalues of the metric tensor. It can also be denoted implying ''r'' = 0, or as an explicit list of signs of eigenvalues s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coordinate
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are not interchangeable; they are commonly distinguished by their position in an ordered tuple, or by a label, such as in "the ''x''-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and ''vice versa''; this is the basis of analytic geometry. Common coordinate systems Number line The simplest example of a coordinate system is the identification of points on a line with real numbers using the '' number line''. In this system, an arbitrary point ''O'' (the ''origin'') is chosen on a given line. The coordinate o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive ''where'' and ''when'' events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and special theory of relativity. In 1908, Hermann Minkowski presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimensional continuum now known as Minkowski space. This interpretation proved vital t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Tensor (general Relativity)
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical content of the associated equations is entirely different. Gutfreund and Renn say "that in general relativity the gravitational potential is represented by the metric tensor." Notation and conventions This article works with a metric signature that is mostly positive (); see sign convention. The gravitation constant G will be kept explicit. This article employs the Einstein summation convention, where repeated indices are automatically summed over. Definition Mathematically, spacetime is represented by a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line Integral
In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integral'' is used as well, although that is typically reserved for #Complex line integral, line integrals in the complex plane. The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the Dot product, scalar product of the vector field with a Differential (infinitesimal), differential vector in the curve). This weighting distinguishes the line integral from simpler integrals defined on interval (mathematics), intervals. Many simple formulae in physics, such as the definition of Work (physics), work as have natural continuous analogues in terms of l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics ( stress, elasticity, quantum mechanics, fluid mechanics, moment of inertia, ...), electrodynamics ( electromagnetic ten ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geodesic (general Relativity)
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime geometry around the star onto three-dimensional (3-D) space. Mathematical expression The full geodesic equation is +\Gamma^\mu _=0\ where ''s'' is a scalar parameter of motion (e.g. the proper time), and \Gamma^\mu _ are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |