HOME



picture info

Polynomial Interpolation
In numerical analysis, polynomial interpolation is the interpolation of a given data set by the polynomial of lowest possible degree that passes through the points in the dataset. Given a set of data points (x_0,y_0), \ldots, (x_n,y_n), with no two x_j the same, a polynomial function p(x)=a_0+a_1x+\cdots+a_nx^n is said to interpolate the data if p(x_j)=y_j for each j\in\. There is always a unique such polynomial, commonly given by two explicit formulas, the Lagrange polynomials and Newton polynomials. Applications The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions. Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point. Polynomial interpolation also forms the basis for algorithms in numerical quadrature ( Simpson's rule) and numerical ordinary differential equation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt to find approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences like economics, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toom–Cook Multiplication
Toom–Cook, sometimes known as Toom-3, named after Andrei Toom, who introduced the new algorithm with its low complexity, and Stephen Cook, who cleaned the description of it, is a multiplication algorithm for large integers. Given two large integers, ''a'' and ''b'', Toom–Cook splits up ''a'' and ''b'' into ''k'' smaller parts each of length ''l'', and performs operations on the parts. As ''k'' grows, one may combine many of the multiplication sub-operations, thus reducing the overall computational complexity of the algorithm. The multiplication sub-operations can then be computed recursively using Toom–Cook multiplication again, and so on. Although the terms "Toom-3" and "Toom–Cook" are sometimes incorrectly used interchangeably, Toom-3 is only a single instance of the Toom–Cook algorithm, where ''k'' = 3. Toom-3 reduces nine multiplications to five, and runs in Θ(''n''log(5)/log(3)) ≈ Θ(''n''1.46). In general, Toom-''k'' runs in , where , ''ne'' is the time spent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invertible Matrix
In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their inverse. Definition An -by- square matrix is called invertible if there exists an -by- square matrix such that\mathbf = \mathbf = \mathbf_n ,where denotes the -by- identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix is uniquely determined by , and is called the (multiplicative) ''inverse'' of , denoted by . Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. Over a field, a square matrix that is ''not'' invertible is called singular or deg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vandermonde Matrix
In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an (m + 1) \times (n + 1) matrix :V = V(x_0, x_1, \cdots, x_m) = \begin 1 & x_0 & x_0^2 & \dots & x_0^n\\ 1 & x_1 & x_1^2 & \dots & x_1^n\\ 1 & x_2 & x_2^2 & \dots & x_2^n\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & x_m & x_m^2 & \dots & x_m^n \end with entries V_ = x_i^j , the ''j''th power of the number x_i, for all zero-based indices i and j . Some authors define the Vandermonde matrix as the transpose of the above matrix. The determinant of a square Vandermonde matrix (when n=m) is called a Vandermonde determinant or Vandermonde polynomial. Its value is: :\det(V) = \prod_ (x_j - x_i). This is non-zero if and only if all x_i are distinct (no two are equal), making the Vandermonde matrix invertible. Applications The polynomial interpolation problem is to find a polynomial p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix Multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices and is denoted as . Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, to represent the composition of functions, composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. Computing matrix products is a central operation in all computational applications of linear algebra. Not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System Of Linear Equations
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variable (math), variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in the three variables . A ''Solution (mathematics), solution'' to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. In the example above, a solution is given by the Tuple, ordered triple (x,y,z)=(1,-2,-2), since it makes all three equations valid. Linear systems are a fundamental part of linear algebra, a subject used in most modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics. A Nonlinear system, system of non-linear equations can often be Approximation, approximated by a linear system (see linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Factor Theorem
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f(x) is a polynomial, then x - a is a factor of f(x) if and only if f (a) = 0 (that is, a is a root of the polynomial). The theorem is a special case of the polynomial remainder theorem. The theorem results from basic properties of addition and multiplication. It follows that the theorem holds also when the coefficients and the element a belong to any commutative ring, and not just a field. In particular, since multivariate polynomials can be viewed as univariate in one of their variables, the following generalization holds : If f(X_1,\ldots,X_n) and g(X_2, \ldots,X_n) are multivariate polynomials and g is independent of X_1, then X_1 - g(X_2, \ldots,X_n) is a factor of f(X_1,\ldots,X_n) if and only if f(g(X_2, \ldots,X_n),X_2, \ldots,X_n) is the zero polynomial. Factorization of polynomials Two problems where the factor theorem is commonly applied are those of factoring a polyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrange Polynomials
In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree of a polynomial, degree that polynomial interpolation, interpolates a given set of data. Given a data set of graph of a function, coordinate pairs (x_j, y_j) with 0 \leq j \leq k, the x_j are called ''nodes'' and the y_j are called ''values''. The Lagrange polynomial L(x) has degree \leq k and assumes each value at the corresponding node, L(x_j) = y_j. Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler. Uses of Lagrange polynomials include the Newton–Cotes formulas, Newton–Cotes method of numerical integration, Shamir's Secret Sharing, Shamir's secret sharing scheme in cryptography, and Reed–Solomon error correction in coding theory. For equispaced nodes, Lagrange interpolation is susceptible to Runge's phenomenon o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unisolvent Functions
In mathematics, a set of ''n'' functions ''f''1, ''f''2, ..., ''f''''n'' is unisolvent (meaning "uniquely solvable") on a domain Ω if the vectors : \beginf_1(x_1) \\ f_1(x_2) \\ \vdots \\ f_1(x_n)\end, \beginf_2(x_1) \\ f_2(x_2) \\ \vdots \\ f_2(x_n)\end, \dots, \beginf_n(x_1) \\ f_n(x_2) \\ \vdots \\ f_n(x_n)\end are linearly independent for any choice of ''n'' distinct points ''x''1, ''x''2 ... ''x''''n'' in Ω. Equivalently, the collection is unisolvent if the matrix ''F'' with entries ''f''''i''(''x''''j'') has nonzero determinant: det(''F'') ≠ 0 for any choice of distinct ''x''''j'''s in Ω. Unisolvency is a property of vector spaces, not just particular sets of functions. That is, a vector space of functions of dimension ''n'' is unisolvent if given any basis (equivalently, a linearly independent set of ''n'' functions), the basis is unisolvent (as a set of functions). This is because any two bases are related by an invertible matrix (the change of basis matrix), so on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set. A function is bijective if it is invertible; that is, a function f:X\to Y is bijective if and only if there is a function g:Y\to X, the ''inverse'' of , such that each of the two ways for composing the two functions produces an identity function: g(f(x)) = x for each x in X and f(g(y)) = y for each y in Y. For example, the ''multiplication by two'' defines a bijection from the integers to the even numbers, which has the ''division by two'' as its inverse function. A function is bijective if and only if it is both injective (or ''one-to-one'')—meaning that each element in the codomain is mappe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]