Poincaré Series (modular Form)
   HOME





Poincaré Series (modular Form)
In number theory, a Poincaré series is a mathematical series generalizing the classical theta series that is associated to any discrete group of symmetries of a complex domain, possibly of several complex variables. In particular, they generalize classical Eisenstein series. They are named after Henri Poincaré. If Γ is a finite group acting on a domain ''D'' and ''H''(''z'') is any meromorphic function on ''D'', then one obtains an automorphic function by averaging over Γ: :\sum_ H(\gamma(z)). However, if Γ is a discrete group, then additional factors must be introduced in order to assure convergence of such a series. To this end, a Poincaré series is a series of the form :\theta_k(z) = \sum_ (J_\gamma(z))^k H(\gamma(z)) where ''J''γ is the Jacobian determinant of the group element γ,Or a more general factor of automorphy as discussed in . and the asterisk denotes that the summation takes place only over coset representatives yielding distinct t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert–Poincaré Series
In mathematics, and in particular in the field of algebra, a Hilbert–Poincaré series (also known under the name Hilbert series), named after David Hilbert and Henri Poincaré, is an adaptation of the notion of dimension to the context of graded algebraic structures (where the dimension of the entire structure is often infinite). It is a formal power series in one indeterminate, say t, where the coefficient of t^n gives the dimension (or rank) of the sub-structure of elements homogeneous of degree n. It is closely related to the Hilbert polynomial in cases when the latter exists; however, the Hilbert–Poincaré series describes the rank in every degree, while the Hilbert polynomial describes it only in all but finitely many degrees, and therefore provides less information. In particular the Hilbert–Poincaré series cannot be deduced from the Hilbert polynomial even if the latter exists. In good cases, the Hilbert–Poincaré series can be expressed as a rational function of i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jacobian Determinant
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. If this matrix is square, that is, if the number of variables equals the number of components of function values, then its determinant is called the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian. They are named after Carl Gustav Jacob Jacobi. The Jacobian matrix is the natural generalization to vector valued functions of several variables of the derivative and the differential of a usual function. This generalization includes generalizations of the inverse function theorem and the implicit function theorem, where the non-nullity of the derivative is replaced by the non-nullity of the Jacobian determinant, and the multiplicative inverse of the derivative is replaced by the inverse of the Jacobian matrix. The Jacobian determinant is fundamentally used for c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Forms
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the group action (mathematics), action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL2(R), SL(2, R) or PSL2(R), PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the Adele ring, adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, '' The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cusp Form
In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion. Introduction A cusp form is distinguished in the case of modular forms for the modular group by the vanishing of the constant coefficient ''a''0 in the Fourier series expansion (see ''q''-expansion) :\sum a_n q^n. This Fourier expansion exists as a consequence of the presence in the modular group's action on the upper half-plane via the transformation :z\mapsto z+1. For other groups, there may be some translation through several units, in which case the Fourier expansion is in terms of a different parameter. In all cases, though, the limit as ''q'' → 0 is the limit in the upper half-plane as the imaginary part of ''z'' → ∞. Taking the quotient by the modular group, this limit corresponds to a cusp of a modular curve (in the sense of a point added for compactification). So, the definition amounts to saying that a cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Group
In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on the upper-half of the complex plane by linear fractional transformations. The name "modular group" comes from the relation to moduli spaces, and not from modular arithmetic. Definition The modular group is the group of fractional linear transformations of the complex upper half-plane, which have the form :z\mapsto\frac, where a,b,c,d are integers, and ad-bc=1. The group operation is function composition. This group of transformations is isomorphic to the projective special linear group \operatorname(2,\mathbb Z), which is the quotient of the 2-dimensional special linear group \operatorname(2,\mathbb Z) by its center \. In other words, \operatorname(2,\mathbb Z) consists of all matrices :\begin a & b \\ c & d \end where a,b, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modular Form
In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory. Modular forms also appear in other areas, such as algebraic topology, sphere packing, and string theory. Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group \mathrm_2(\mathbb Z) \subset \mathrm_2(\mathbb R). Every modular form is attached to a Galois representation. The term "modular form", as a systematic description, is usually attributed to Erich Hecke. The importance of modular forms across multiple field of mathematics has been humorously re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Character (group Theory)
In mathematics, a character is (most commonly) a special kind of function (mathematics), function from a group (mathematics), group to a field (mathematics), field (such as the complex numbers). There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified. Multiplicative character A multiplicative character (or linear character, or simply character) on a group ''G'' is a group homomorphism from ''G'' to the unit group, multiplicative group of a field , usually the field of complex numbers. If ''G'' is any group, then the set Ch(''G'') of these morphisms forms an abelian group under pointwise multiplication. This group is referred to as the character group of ''G''. Sometimes only ''unitary'' characters are considered (thus the image is in the unit circle); other such homomorphisms are then called ''quasi-characters''. Dirichlet characters can be seen as a special case of this definition. Multiplicative characters are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fuchsian Group
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R) (so that it contains orientation-reversing elements), and sometimes it is allowed to be a Kleinian group (a discrete subgroup of PSL(2,C)) which is conjugate to a subgroup of PSL(2,R). Fuchsian groups are used to create Fuchsian models of Riemann surfaces. In this case, the group may be called the Fuchsian group of the surface. In some sense, Fuchsian groups do for non-Euclidean geometry what crystallographic groups do for Euclidean geometry. Some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor Of Automorphy
In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group. Factor of automorphy In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group G acts on a complex-analytic manifold X. Then, G also acts on the space of holomorphic functions from X to the complex numbers. A function f is termed an ''automorphic form'' if the following holds: : f(g.x) = j_g(x)f(x) where j_g(x) is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of G. The ''factor of automorphy'' for the automorphic form f is the function j. An ''automorphic function'' is an automorphic form for which j is the identity. Some facts about factors of automorphy: * Every factor of automorphy is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Automorphic Function
In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group. Factor of automorphy In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group G acts on a complex-analytic manifold X. Then, G also acts on the space of holomorphic functions from X to the complex numbers. A function f is termed an ''automorphic form'' if the following holds: : f(g.x) = j_g(x)f(x) where j_g(x) is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of G. The ''factor of automorphy'' for the automorphic form f is the function j. An ''automorphic function'' is an automorphic form for which j is the identity. Some facts about factors of automorphy: * Every factor of automorphy is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]