Platt Scaling
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a statistical classification, classification model into a probabilistic classification, probability distribution over classes. The method was invented by John Platt (computer scientist), John Platt in the context of support vector machines, replacing an earlier method by Vladimir Vapnik, Vapnik, but can be applied to other classification models. Platt scaling works by fitting a logistic regression model to a classifier's scores. Problem formalization Consider the problem of binary classification: for inputs , we want to determine whether they belong to one of two classes, arbitrarily labeled and . We assume that the classification problem will be solved by a real-valued function , by predicting a class label . For many problems, it is convenient to get a probability P(y=1, x), i.e. a classification that not only gives an answer, but also a degree of certainty about the answer. Some cla ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Additive Smoothing
In statistics, additive smoothing, also called Laplace smoothing or Lidstone smoothing, is a technique used to smooth count data, eliminating issues caused by certain values having 0 occurrences. Given a set of observation counts \mathbf = \langle x_1, x_2, \ldots, x_d \rangle from a d-dimensional multinomial distribution with N trials, a "smoothed" version of the counts gives the estimator : \hat\theta_i = \frac \qquad (i = 1, \ldots, d), where the smoothed count \hat x_i = N \hat\theta_i, and the "pseudocount" ''α'' > 0 is a smoothing parameter, with ''α'' = 0 corresponding to no smoothing (this parameter is explained in below). Additive smoothing is a type of shrinkage estimator, as the resulting estimate will be between the empirical probability ( relative frequency) x_i/N and the uniform probability 1/d. Common choices for ''α'' are 0 (no smoothing), (the Jeffreys prior), or 1 (Laplace's rule of succession), but the parameter may also be set empi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Softmax Function
The softmax function, also known as softargmax or normalized exponential function, converts a tuple of real numbers into a probability distribution of possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes. Definition The softmax function takes as input a tuple of real numbers, and normalizes it into a probability distribution consisting of probabilities proportional to the exponentials of the input numbers. That is, prior to applying softmax, some tuple components could be negative, or greater than one; and might not sum to 1; but after applying softmax, each component will be in the interval (0, 1), and the components will add up to 1, so that they can be interpreted as probabilities. Furthermore, the la ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
![]() |
Residual Neural Network
A residual neural network (also referred to as a residual network or ResNet) is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition, and won the ImageNet Large Scale Visual Recognition ChallengeILSVRC of that year. As a point of terminology, "residual connection" refers to the specific architectural motif of , where f is an arbitrary neural network module. The motif had been used previously (see Residual neural network#History, §History for details). However, the publication of ResNet made it widely popular for Feedforward neural network, feedforward networks, appearing in neural networks that are seemingly unrelated to ResNet. The residual connection stabilizes the training and convergence of deep neural networks with hundreds of layers, and is a common motif in deep neural networks, such as Transformer (deep learning architecture), transformer models (e.g., BERT (language ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
LeNet
LeNet is a series of convolutional neural network architectures created by a research group in AT&T Bell Laboratories during the 1988 to 1998 period, centered around Yann LeCun. They were designed for reading small grayscale images of handwritten digits and letters, and were used in ATM for reading cheques. Convolutional neural networks are a kind of feed-forward neural network whose artificial neurons can respond to a part of the surrounding cells in the coverage range and perform well in large-scale image processing. LeNet-5 was one of the earliest convolutional neural networks and was historically important during the development of deep learning. In general, when "LeNet" is referred to without a number, it refers to the 1998 version, the most well-known version. It is also sometimes called "LeNet-5" or "LeNet5". Development history In 1988, LeCun joined the Adaptive Systems Research Department at AT&T Bell Laboratories in Holmdel, New Jersey, United States, headed by L ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Isotonic Regression
In statistics and numerical analysis, isotonic regression or monotonic regression is the technique of fitting a free-form line to a sequence of observations such that the fitted line is non-decreasing function, non-decreasing (or non-increasing) everywhere, and lies as close to the observations as possible. Applications Isotonic regression has applications in statistical inference. For example, one might use it to fit an isotonic curve to the means of some set of experimental results when an increase in those means according to some particular ordering is expected. A benefit of isotonic regression is that it is not constrained by any functional form, such as the linearity imposed by linear regression, as long as the function is monotonic increasing. Another application is nonmetric multidimensional scaling, where a low-dimensional embedding for data points is sought such that order of distances between points in the embedding matches order of dissimilarity between points. Isot ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
![]() |
Random Forest
Random forests or random decision forests is an ensemble learning method for statistical classification, classification, regression analysis, regression and other tasks that works by creating a multitude of decision tree learning, decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees. For regression tasks, the output is the average of the predictions of the trees. Random forests correct for decision trees' habit of overfitting to their Test set, training set. The first algorithm for random decision forests was created in 1995 by Tin Kam Ho using the random subspace method, which, in Ho's formulation, is a way to implement the "stochastic discrimination" approach to classification proposed by Eugene Kleinberg. An extension of the algorithm was developed by Leo Breiman and Adele Cutler, who registered "Random Forests" as a trademark in 2006 (, owned by Minitab, Minitab, Inc.). The extension combines Breiman's ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
Multilayer Perceptron
In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function '' Mathematics of Control, Signals, and Systems'', 2(4), 303–314. Modern neural networks are trained using backpropagationRumelhart, David E., Geoffrey E. Hinton, and R. J. Williams.Learning Internal Representations by Error Propagation. David E. Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press, 1986. and are colloquially referred to as "vanilla" networks. MLPs grew out of an effort to improve single-layer perceptrons, which could only be applied to linearly separable data. A perceptron traditionally used ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Calibration (statistics)
There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean :*a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; :*procedures in statistical classification to determine class membership probabilities which assess the uncertainty of a given new observation belonging to each of the already established classes. In addition, calibration is used in statistics with the usual general meaning of calibration. For example, model calibration can be also used to refer to Bayesian inference about the value of a model's parameters, given some data set, or more generally to any type of fitting of a statistical model. As Philip Dawid puts it, "a forecaster is ''well calibrated'' if, for example, of those events to which he assigns a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Naive Bayes Classifier
In statistics, naive (sometimes simple or idiot's) Bayes classifiers are a family of " probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. In other words, a naive Bayes model assumes the information about the class provided by each variable is unrelated to the information from the others, with no information shared between the predictors. The highly unrealistic nature of this assumption, called the naive independence assumption, is what gives the classifier its name. These classifiers are some of the simplest Bayesian network models. Naive Bayes classifiers generally perform worse than more advanced models like logistic regressions, especially at quantifying uncertainty (with naive Bayes models often producing wildly overconfident probabilities). However, they are highly scalable, requiring only one parameter for each feature or predictor in a learning problem. Maximum-likelihood training can be done by evaluating a c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Boosting (machine Learning)
In machine learning (ML), boosting is an Ensemble learning, ensemble metaheuristic for primarily reducing Bias–variance tradeoff, bias (as opposed to variance). It can also improve the Stability (learning theory), stability and accuracy of ML Statistical classification, classification and Regression analysis, regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners. The concept of boosting is based on the question posed by Michael Kearns (computer scientist), Kearns and Leslie Valiant, Valiant (1988, 1989):Michael Kearns(1988)''Thoughts on Hypothesis Boosting'' Unpublished manuscript (Machine Learning class project, December 1988) "Can a set of weak learners create a single strong learner?" A weak learner is defined as a Statistical classification, classifier that is only slightly correlated with the true classification. A strong learner is a classifier that is arbitrarily well-correlated with the true classification. R ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Machine Learning (journal)
''Machine Learning'' is a peer-reviewed scientific journal, published since 1986. In 2001, forty editors and members of the editorial board of ''Machine Learning'' resigned in order to support the ''Journal of Machine Learning Research'' (JMLR), saying that in the era of the internet, it was detrimental for researchers to continue publishing their papers in expensive journals with pay-access archives. Instead, they wrote, they supported the model of ''JMLR'', in which authors retained copyright over their papers and archives were freely available on the internet. Following the mass resignation, Kluwer changed their publishing policy to allow authors to self-archive their papers online after peer-review Peer review is the evaluation of work by one or more people with similar competencies as the producers of the work ( peers). It functions as a form of self-regulation by qualified members of a profession within the relevant field. Peer review .... Selected articles * * ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |