HOME



picture info

Perles Configuration
In geometry, the Perles configuration is a system of nine points and nine lines in the Euclidean plane for which every combinatorially equivalent realization has at least one irrational number as one of its coordinates. It can be constructed from the diagonals and symmetry lines of a regular pentagon, and their crossing points. All of the realizations of the Perles configuration in the projective plane are equivalent to each other under projective transformations. The Perles configuration is the smallest configuration of points and lines that cannot be realized with rational coordinates. It is named after Micha Perles, who used it to construct an eight-dimensional convex polytope that cannot be given rational number coordinates and that have the fewest vertices (twelve) of any known irrational polytope. Construction One way of constructing the Perles configuration is to start with a regular pentagon and its five diagonals. These diagonals form the sides of a smaller inner pentagon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Steinitz's Theorem
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedron, convex polyhedra: they are exactly the vertex connectivity, 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs. This result provides a classification theorem for the three-dimensional convex polyhedra, something that is not known in higher dimensions. It provides a complete and purely combinatorial description of the graphs of these polyhedra, allowing other results on them, such as Eberhard's theorem on the realization of polyhedra with given types of faces, to be proven more easily, without reference to the geometry of these shapes. Additionally, it has been applied in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Maximum Distance Separable Code
In coding theory, the Singleton bound, named after the American mathematician Richard Collom Singleton (1928–2007), is a relatively crude upper bound on the size of an arbitrary block code C with block length n, size M and minimum distance d. It is also known as the Joshibound proved by and even earlier by Komamiya. Statement of the bound The minimum distance of a set C of codewords of length n is defined as d = \min_ d(x,y) where d(x,y) is the Hamming distance between x and y. The expression A_(n,d) represents the maximum number of possible codewords in a q-ary block code of length n and minimum distance d. Then the Singleton bound states that A_q(n,d) \leq q^. Proof First observe that the number of q-ary words of length n is q^n, since each letter in such a word may take one of q different values, independently of the remaining letters. Now let C be an arbitrary q-ary block code of minimum distance d. Clearly, all codewords c \in C are distinct. If we puncture the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Planar Graph
In graph theory, a planar graph is a graph (discrete mathematics), graph that can be graph embedding, embedded in the plane (geometry), plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with addit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Graph Drawing
Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graph (discrete mathematics), graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics. A drawing of a graph or network diagram is a pictorial representation of the vertex (graph theory), vertices and edge (graph theory), edges of a graph. This drawing should not be confused with the graph itself: very different layouts can correspond to the same graph., p. 6. In the abstract, all that matters is which pairs of vertices are connected by edges. In the concrete, however, the arrangement of these vertices and edges within a drawing affects its understandability, usability, fabrication cost, and aesthetics. The problem gets worse if the graph changes over time by adding and deleting edges (dynamic graph drawing) and the goal is to preserve the user's men ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Matrix Rank
In linear algebra, the rank of a matrix (mathematics), matrix is the Dimension (vector space), dimension of the vector space generated (or Linear span, spanned) by its columns. p. 48, § 1.16 This corresponds to the maximal number of linearly independent columns of . This, in turn, is identical to the dimension of the vector space spanned by its rows. Rank is thus a measure of the "Degenerate form, nondegenerateness" of the system of linear equations and linear transformation encoded by . There are multiple equivalent definitions of rank. A matrix's rank is one of its most fundamental characteristics. The rank is commonly denoted by or ; sometimes the parentheses are not written, as in .Alternative notation includes \rho (\Phi) from and . Main definitions In this section, we give some definitions of the rank of a matrix. Many definitions are possible; see #Alternative definitions, Alternative definitions for several of these. The column rank of is the dimension (linear alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Tropical Geometry
In mathematics, tropical geometry is the study of polynomials and their geometric properties when addition is replaced with minimization and multiplication is replaced with ordinary addition: : x\oplus y=\min\, : x\otimes y=x+y. So for example, the classical polynomial x^3+xy+y^4 would become \min\. Such polynomials and their solutions have important applications in optimization problems, for example the problem of optimizing departure times for a network of trains. Tropical geometry is a variant of algebraic geometry in which polynomial graphs resemble piecewise linear meshes, and in which numbers belong to the tropical semiring instead of a field. Because classical and tropical geometry are closely related, results and methods can be converted between them. Algebraic varieties can be mapped to a tropical counterpart and, since this process still retains some geometric information about the original variety, it can be used to help prove and generalize classical results from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Matroid Minor
In the mathematical theory of matroids, a minor of a matroid ''M'' is another matroid ''N'' that is obtained from ''M'' by a sequence of restriction and contraction operations. Matroid minors are closely related to graph minors, and the restriction and contraction operations by which they are formed correspond to edge deletion and edge contraction operations in graphs. The theory of matroid minors leads to structural decompositions of matroids, and characterizations of matroid families by forbidden minors, analogous to the corresponding theory in graphs. Definitions If ''M'' is a matroid on the set ''E'' and ''S'' is a subset of ''E'', then the restriction of ''M'' to ''S'', written ''M'' , ''S'', is the matroid on the set ''S'' whose independent sets are the independent sets of ''M'' that are contained in ''S''. Its circuits are the circuits of ''M'' that are contained in ''S'' and its rank function is that of ''M'' restricted to subsets of ''S''. If ''T'' is an independent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Linear Matroid
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra. A linear matroid is a matroid that has a representation, and an ''F''-linear matroid (for a field ''F'') is a matroid that has a representation using a vector space over ''F''. Matroid representation theory studies the existence of representations and the properties of linear matroids. Definitions A (finite) matroid (E,\mathcal) is defined by a finite set E (the elements of the matroid) and a non-empty family \mathcal of the subsets of E, called the independent sets of the matroid. It is required to satisfy the properties that every subset of an independent set is itself independent, and that if one ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Dual Matroid
Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual number, a number system used in automatic differentiation * Dual (grammatical number), a grammatical category used in some languages * Dual county, a Gaelic games county which competes in both Gaelic football and hurling * Dual diagnosis, a psychiatric diagnosis of co-occurrence of substance abuse and a mental problem * Dual fertilization, simultaneous application of a P-type and N-type fertilizer * Dual impedance, electrical circuits that are the dual of each other * Dual SIM cellphone supporting use of two SIMs * Aerochute International Dual a two-seat Australian powered parachute design Acronyms and other uses * Dual (brand), a manufacturer of Hifi equipment * DUAL (cognitive architecture), an artificial intelligence design model * DUA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Matroid
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]