HOME





Oblique Correction
In particle physics, an oblique correction refers to a particular type of radiative correction to the electroweak sector of the Standard Model. Oblique corrections are defined in four-fermion scattering processes, ( +  →  +  ) at the CERN Large Electron–Positron Collider. There are three classes of radiative corrections to these processes: vacuum polarization corrections, vertex corrections, and box corrections. The vacuum polarization corrections are referred to as oblique corrections, since they only affect the mixing and propagation of the gauge bosons and they do not depend on which type of fermions appear in the initial or final states. (The vertex and box corrections, which depend on the identity of the initial and final state fermions, are called nonoblique corrections.) Any new particles charged under the electroweak gauge groups can contribute to oblique corrections. Therefore, the oblique corrections can be used to constrain possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three Generation (particle physics), generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of Up quark, up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quark, Quarks cannot exist on their own but form hadrons. Hadrons that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radiative Correction
Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian. For example, an electron theory may begin by postulating an electron with an initial mass and charge. In quantum field theory a cloud of virtual particles, such as photons, positrons, and others surrounds and interacts with the initial electron. Accounting for the interactions of the surrounding particles (e.g. collisions at different energies) shows that the electron-system behaves as if it had a different mass and charge than initially postulated. Renormalization, in this example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electroweak
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246  GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015  K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Four-fermion Interactions
In quantum field theory, fermions are described by anticommuting spinor fields. A four-fermion interaction describes a local interaction between four fermionic fields at a point in spacetime. A theory involving such an interaction might be an effective field theory or it might be fundamental. In four spacetime dimensions, such theories are not renormalisable. Relativistic models Some examples are the following: *Fermi's theory of the weak interaction. The interaction term has a (vector minus axial) form. *The Gross–Neveu model. This is a four-fermi theory of Dirac fermions without chiral symmetry and as such, it may or may not be massive. *The Thirring model. This is a four-fermi theory of fermions with a vector coupling. *The Nambu–Jona-Lasinio model. This is a four-fermi theory of Dirac fermions with chiral symmetry and as such, it has no bare mass. Nonrelativistic models A nonrelativistic example is the BCS theory at large length scales with the phonons integrated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scattering
In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called ''diffuse reflections'' and unscattered reflections are called ''specular'' (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering research, noted the connecti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Geneva, on the France–Switzerland border. It comprises #Member states and budget, 24 member states. Israel, admitted in 2013, is the only full member geographically out of Europe. CERN is an official United Nations General Assembly observers#Intergovernmental organizations, United Nations General Assembly observer. The acronym CERN is also used to refer to the laboratory; in 2023, it had 2,666 scientific, technical, and administrative staff members, and hosted about 12,370 users from institutions in more than 80 countries. In 2016, CERN generated 49 Byte#Multiple-byte units, petabytes of data. CERN's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research – consequently, numer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Electron–Positron Collider
The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland. LEP collided electrons with positrons at energies that reached 209 GeV. It was a circular collider with a circumference of 27 kilometres built in a tunnel roughly 100 m (300 ft) underground and passing through Switzerland and France. LEP was used from 1989 until 2000. Around 2001 it was dismantled to make way for the Large Hadron Collider, which re-used the LEP tunnel. To date, LEP is the most powerful accelerator of leptons ever built. Collider background LEP was a circular lepton collider – the most powerful such ever built. For context, modern colliders can be generally categorized based on their shape (circular or linear) and on what types of particles they accelerate and collide (leptons or hadrons). Leptons are point particles and are rela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vacuum Polarization
In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon). It is analogous to the electric polarization of dielectric materials, but in vacuum without the need of a medium. The effects of vacuum polarization have been routinely observed experimentally since then as very well-understood background effects. Vacuum polarization, referred to below as the one loop contribution, occurs with leptons (electron–positron pairs) or quarks. History Vacuum polarization was first discussed in papers by Paul Dirac and Werner Heisenberg in 1934. After developments in radar equipment for World War II resulted in higher accuracy for measuring the energy levels of the h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertex Function
In quantum electrodynamics, the vertex function describes the coupling between a photon and an electron beyond the leading order of perturbation theory (quantum mechanics), perturbation theory. In particular, it is the one particle irreducible correlation function involving the fermion \psi, the antifermion \bar, and the vector potential A. Definition The vertex function \Gamma^\mu can be defined in terms of a functional derivative of the effective action Seff as :\Gamma^\mu = - The dominant (and classical) contribution to \Gamma^\mu is the gamma matrix \gamma^\mu, which explains the choice of the letter. The vertex function is constrained by the symmetries of quantum electrodynamics — Lorentz invariance; gauge invariance or the Photon polarization, transversality of the photon, as expressed by the Ward identity; and invariance under Parity (physics), parity — to take the following form: : \Gamma^\mu = \gamma^\mu F_1(q^2) + \frac F_2(q^2) where \sigma^ = (i/2) [\gamma^, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Box Correction
A box (plural: boxes) is a container with rigid sides used for the storage or transportation of its contents. Most boxes have flat, parallel, rectangular sides (typically rectangular prisms). Boxes can be very small (like a matchbox) or very large (like a shipping box for furniture) and can be used for a variety of purposes, from functional to decorative. Boxes may be made of a variety of materials, both durable (such as wood and metal) and non-durable (such as corrugated fiberboard and paperboard). Corrugated metal boxes are commonly used as shipping containers. Boxes may be closed and shut with flaps, doors, or a separate lid. They can be secured shut with adhesives, tapes, string, or more decorative or elaborately functional mechanisms, such as catches, clasps or locks. Packaging Several types of boxes are used in packaging and storage. * A corrugated box is a shipping container made from corrugated fiberboard, most commonly used to transport products from a wareho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonoblique Correction
In four-fermion scattering processes of particle physics, a nonoblique correction, also called a direct correction, refers to a radiative correction of type  +  →  +  in the electroweak sector of the Standard Model. These corrections are being studied at the CERN LEP collider. Together with the oblique corrections, ''nonoblique corrections'' can be used to constrain models of physics beyond the Standard Model. Classes There are three classes of radiative corrections to these processes: * vacuum polarization corrections, * vertex corrections, and * box corrections. The vertex and box corrections, which depend on the identity of the initial and final state fermions, are referred to as the non-oblique corrections. The vacuum polarization corrections are referred to as oblique corrections, since they only affect the mixing and propagation of the gauge bosons and they do not depend on which type of fermions appear in the initial or final states. Exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauge Group
A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle P\to X with a structure Lie group G, a gauge group is defined to be a group of its vertical automorphisms, that is, its group of bundle automorphisms. This group is isomorphic to the group G(X) of global sections of the associated group bundle \widetilde P\to X whose typical fiber is a group G which acts on itself by the adjoint representation. The unit element of G(X) is a constant unit-valued section g(x)=1 of \widetilde P\to X. At the same time, gauge gravitation theory exemplifies field theory on a principal frame bundle whose gauge symmetries are general covariant transformations which are not elements of a gauge group. In the physical literature on gauge theory, a structure group of a principal bundle often is called the gauge group. In quantum gauge theory, one considers a normal subgroup G^0(X) of a gauge group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]