HOME
*





Nuclear Operator
In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs). Preliminaries and notation Throughout let ''X'',''Y'', and ''Z'' be topological vector spaces (TVSs) and ''L'' : ''X'' → ''Y'' be a linear operator (no assumption of continuity is made unless otherwise stated). * The projective tensor product of two locally convex TVSs ''X'' and ''Y'' is denoted by X \otimes_ Y and the completion of this space will be denoted by X \widehat_ Y. * ''L'' : ''X'' → ''Y'' is a topological homomorphism or homomorphism, if it is linear, continuous, and L : X \to \operatorname L is an open map, where \operatorname L, the image of ''L'', has the subspace topology induced by ''Y''. ** If ''S'' is a subspace of ''X'' then both the quotient map ''X'' → ''X''/''S'' and the canonical injection ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-complete
In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non- metrizable TVSs. Properties * Every quasi-complete TVS is sequentially complete. * In a quasi-complete locally convex space, the closure of the convex hull of a compact subset is again compact. * In a quasi-complete Hausdorff TVS, every precompact subset is relatively compact. * If is a normed space and is a quasi-complete locally convex In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological v ... TVS then the set of all compact linear maps of into is a closed vector subspace of L_b(X;Y). * Every quasi-complete infrabarrelled space is barreled. * If is a quasi-complete lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Auxiliary Normed Spaces
In functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk D is bounded: in this case, the auxiliary normed space is \operatorname D with norm p_D(x) := \inf_ r. The other method is used if the disk D is absorbing: in this case, the auxiliary normed space is the quotient space X / p_D^(0). If the disk is both bounded and absorbing then the two auxiliary normed spaces are canonically isomorphic (as topological vector spaces and as normed spaces). Preliminaries A subset of a vector space is called a disk and is said to be disked, absolutely convex, or convex balanced if it is convex and balanced. If C and D are subsets of a vector space X then D absorbs C if there exists a real r > 0 such that C \subseteq a Dfor any scalar a satisfying , a, \geq r. WThe set D is called absorbing in X if D absorbs \ for every x \in X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Banach Disk
In functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk D is bounded: in this case, the auxiliary normed space is \operatorname D with norm p_D(x) := \inf_ r. The other method is used if the disk D is absorbing: in this case, the auxiliary normed space is the quotient space X / p_D^(0). If the disk is both bounded and absorbing then the two auxiliary normed spaces are canonically isomorphic (as topological vector spaces and as normed spaces). Preliminaries A subset of a vector space is called a disk and is said to be disked, absolutely convex, or convex balanced if it is convex and balanced. If C and D are subsets of a vector space X then D absorbs C if there exists a real r > 0 such that C \subseteq a Dfor any scalar a satisfying , a, \geq r. WThe set D is called absorbing in X if D absorbs \ for every x \in X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Map
An integral bilinear form is a bilinear functional that belongs to the continuous dual space of X \widehat_ Y, the injective tensor product of the locally convex topological vector spaces (TVSs) ''X'' and ''Y''. An integral linear operator is a continuous linear operator that arises in a canonical way from an integral bilinear form. These maps play an important role in the theory of nuclear spaces and nuclear maps. Definition - Integral forms as the dual of the injective tensor product Let ''X'' and ''Y'' be locally convex TVSs, let X \otimes_ Y denote the projective tensor product, X \widehat_ Y denote its completion, let X \otimes_ Y denote the injective tensor product, and X \widehat_ Y denote its completion. Suppose that \operatorname : X \otimes_ Y \to X \widehat_ Y denotes the TVS-embedding of X \otimes_ Y into its completion and let ^\operatorname : \left( X \widehat_ Y \right)^_b \to \left( X \otimes_ Y \right)^_b be its transpose, which is a vector space-isomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace Class
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators. In quantum mechanics, mixed states are described by density matrices, which are certain trace class operators. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and use the term "nuclear operator" in more general topological vector spaces (such as Banach spaces). Note that the trace operator studied in partial differential equations is an unrelated concept. Definition Suppose H is a Hilbert space and A : H \to H a bounded linear operator on H which is non-negative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In the context of abstract algebra, a mathematical object is an algebraic structure such as a group, ring, or vector space. An automorphism is simply a bijective homomorphism of an object with itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) The identity morphism ( identity mapping) is called the trivial automorphism in some contexts. Respectively, other (non-identity) automorphisms are called nontrivial automorphisms. The exact definition of an automorphism depends on the type of " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reflexive Space
In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from X into its bidual (which is the strong dual of the strong dual of X) is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space (and so in particular, every Banach space) X is reflexive if and only if the canonical evaluation map from X into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is reflexive but is nevertheless isometrically isomorphic to its bidual (any such isomorphism is thus necessarily the canonical evaluation map). Reflexive spaces play an important role in the general theory of locally convex TVSs and in the theory of Banach spaces in particular. Hilbert spaces are prominent examples of reflexive Banach spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equicontinuous
In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus ''sequences'' of functions. Equicontinuity appears in the formulation of Ascoli's theorem, which states that a subset of ''C''(''X''), the space of continuous functions on a compact Hausdorff space ''X'', is compact if and only if it is closed, pointwise bounded and equicontinuous. As a corollary, a sequence in ''C''(''X'') is uniformly convergent if and only if it is equicontinuous and converges pointwise to a function (not necessarily continuous a-priori). In particular, the limit of an equicontinuous pointwise convergent sequence of continuous functions ''fn'' on either metric space or locally compact space is continuous. If, in addition, ''fn'' are holomorphic, then the limit is also holomorphic. The uniform bou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]