HOME





Normal Modal Logic
In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautology (logic), tautologies; * All instances of the Kripke_semantics, Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed under: * Detachment rule (''modus ponens''): A\to B, A \in L implies B \in L; * Necessitation rule: A \in L implies \Box A \in L. The smallest logic satisfying the above conditions is called K. Most modal logics commonly used nowadays (in terms of having philosophical motivations), e.g. C. I. Lewis's S4 and S5 (modal logic), S5, are normal (and hence are extensions of K). However a number of deontic logic, deontic and epistemic logics, for example, are non-normal, often because they give up the Kripke schema. Every normal modal logic is regular modal logic, regular and hence classical modal logic, classical. Common normal modal logics The following table lists several common normal modal systems. The notation refers to the table at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kripke Semantics
Kripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise'). Semantics of modal logic The language of propositional modal logic consists of a countably infinite set of propositional variables, a set of truth-functional connectives (in this article \to and \neg), and the modal operator \Box ("necessarily"). The modal operator \Diamond ("possibly") is (classically) the dual of \Box and may be defined in terms of necessity like so: \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Order
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is reflexive, antisymmetric, and transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relations, referred to in this article as ''non-strict'' partial orders. However som ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strict Order
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is reflexive, antisymmetric, and transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relations, referred to in this article as ''non-strict'' partial orders. However some a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Provability Logic
Provability logic is a modal logic, in which the box (or "necessity") operator is interpreted as 'it is provable that'. The point is to capture the notion of a proof predicate of a reasonably rich formal theory, such as Peano arithmetic. Examples There are a number of provability logics, some of which are covered in the literature mentioned in . The basic system is generally referred to as GL (for Gödel– Löb) or L or K4W (W stands for well-foundedness). It can be obtained by adding the modal version of Löb's theorem to the logic K (or K4). Namely, the axioms of GL are all tautologies of classical propositional logic plus all formulas of one of the following forms: * Distribution axiom: * Löb's axiom: And the rules of inference are: * ''Modus ponens'': From ''p'' → ''q'' and ''p'' conclude ''q''; * Necessitation: From \vdash ''p'' conclude \vdash . History The GL model was pioneered by Robert M. Solovay in 1976. Since then, until his death in 1996, the prime inspi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Directed Set
In mathematics, a directed set (or a directed preorder or a filtered set) is a preordered set in which every finite subset has an upper bound. In other words, it is a non-empty preordered set A such that for any a and b in A there exists c in A with a \leq c and b \leq c. A directed set's preorder is called a direction. The notion defined above is sometimes called an . A is defined symmetrically, meaning that every finite subset has a lower bound. Some authors (and this article) assume that a directed set is directed upward, unless otherwise stated. Other authors call a set directed if and only if it is directed both upward and downward. Directed sets are a generalization of nonempty totally ordered sets. That is, all totally ordered sets are directed sets (contrast Partially ordered sets, ordered sets, which need not be directed). Join-semilattices (which are partially ordered sets) are directed sets as well, but not conversely. Likewise, Lattice (order), lattices are directed s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Total Preorder
In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by (strictly) partially ordered sets and preorders.. There are several common ways of formalizing weak orderings, that are different from each other but cryptomorphic (interconvertable with no loss of information): they may be axiomatized as strict weak orderings (strictly partially ordered sets in which incomparability is a transitive relation), as total preorders (transitive binary relations in which at least one of the two possible relations exists between every pair of elements), or as ordered partitions ( partitions of the elements into disjoint subsets, together with a total order on the subsets). In many cases another representation called a preferential arrangement based on a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preorder
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. The name is meant to suggest that preorders are ''almost'' partial orders, but not quite, as they are not necessarily Antisymmetric relation, antisymmetric. A natural example of a preorder is the Divisor#Definition, divides relation "x divides y" between integers, polynomials, or elements of a commutative ring. For example, the divides relation is reflexive as every integer divides itself. But the divides relation is not antisymmetric, because 1 divides -1 and -1 divides 1. It is to this preorder that "greatest" and "lowest" refer in the phrases "greatest common divisor" and "lowest common multiple" (except that, for integers, the greatest common divisor is also the greatest for the natural order of the integers). Preorders are closely related to equivalence relations and (non-strict) partial orders. Both of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classical Modal Logic
In modal logic, a classical modal logic L is any modal logic containing (as axiom or theorem) the duality of the modal operators :\Diamond A \leftrightarrow \lnot\Box\lnot A that is also closed under the rule :\frac. Alternatively, one can give a dual definition of L by which L is classical if and only if it contains (as axiom or theorem) :\Box A \leftrightarrow \lnot\Diamond\lnot A and is closed under the rule :\frac. The weakest classical system is sometimes referred to as E and is non-normal. Both algebraic and neighborhood semantics characterize familiar classical modal systems that are weaker than the weakest normal modal logic K. Every regular modal logic is classical, and every normal modal logic In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautology (logic), tautologies; * All instances of the Kripke_semantics, Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed ... is regular and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modal Logic
Modal logic is a kind of logic used to represent statements about Modality (natural language), necessity and possibility. In philosophy and related fields it is used as a tool for understanding concepts such as knowledge, obligation, and causality, causation. For instance, in epistemic modal logic, the well-formed_formula, formula \Box P can be used to represent the statement that P is known. In deontic modal logic, that same formula can represent that P is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic modal logics treat the formula \Box P \rightarrow P as a Tautology_(logic), tautology, representing the principle that only true statements can count as knowledge. However, this formula is not a tautology in deontic modal logic, since what ought to be true can be false. Modal logics are formal systems that include unary operation, unary operators such as \Diamond and \Box, representing possibility and necessi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Modal Logic
In modal logic, a regular modal logic is a modal logic containing (as axiom or theorem) the duality of the modal operators: \Diamond A \leftrightarrow \lnot\Box\lnot A and closed under the rule \frac. Every normal modal logic In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautology (logic), tautologies; * All instances of the Kripke_semantics, Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed ... is regular, and every regular modal logic is classical. References *Chellas, Brian. ''Modal Logic: An Introduction''. Cambridge University Press, 1980. Logic Modal logic {{logic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]