Noetherian (other)
In mathematics, the adjective Noetherian is used to describe Category_theory#Categories.2C_objects.2C_and_morphisms, objects that satisfy an ascending chain condition, ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite length. Noetherian objects are named after Emmy Noether, who was the first to study the ascending and descending chain conditions for rings. Specifically: * Noetherian group, a Group (mathematics), group that satisfies the ascending chain condition on subgroups. * Noetherian ring, a Ring (mathematics), ring that satisfies the ascending chain condition on ideal of a ring, ideals. * Noetherian module, a Module (mathematics), module that satisfies the ascending chain condition on submodules. * More generally, an object in a Category (mathematics), category is said to be Noetherian if there is no infinitely increasing filtration of it by subobjects. A category is Noeth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adjective
An adjective (abbreviations, abbreviated ) is a word that describes or defines a noun or noun phrase. Its semantic role is to change information given by the noun. Traditionally, adjectives are considered one of the main part of speech, parts of speech of the English language, although historically they were classed together with Noun, nouns. Nowadays, certain words that usually had been classified as adjectives, including ''the'', ''this'', ''my'', etc., typically are classed separately, as Determiner (class), determiners. Examples: * That's a ''funny'' idea. (Prepositive attributive) * That idea is ''funny''. (Predicate (grammar), Predicative) * * The ''good'', the ''bad'', and the ''funny''. (Substantive adjective, Substantive) * Clara Oswald, completely ''fictional'', died three times. (Apposition, Appositive) Etymology ''Adjective'' comes from Latin ', a calque of (whence also English ''epithet''). In the grammatical tradition of Latin and Greek, because adjectives were I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Relation
In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite length. Noetherian objects are named after Emmy Noether, who was the first to study the ascending and descending chain conditions for rings. Specifically: * Noetherian group, a group that satisfies the ascending chain condition on subgroups. * Noetherian ring, a ring that satisfies the ascending chain condition on ideals. * Noetherian module, a module that satisfies the ascending chain condition on submodules. * More generally, an object in a category is said to be Noetherian if there is no infinitely increasing filtration of it by subobjects. A category is Noetherian if every object in it is Noetherian. * Noetherian relation, a binary relation that satisfies the ascending chain condition on its elements. * Noetherian topological space, a t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectrum Of A Ring
In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with a sheaf of rings. Zariski topology For any ideal I of R, define V_I to be the set of prime ideals containing I. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\big\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows: For f\in R, define D_f to be the set of prime ideals of R not containing f. Then each D_f is an open subset of \operatorname(R), and \big\ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: In fact, the maximal ideals in R are precisely the closed points in this topology. By the same reasoning, \operatorname(R) is not, in general, a T1 space. However, \operatorna ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Scheme
In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets \operatorname A_i, where each A_i is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noetherian rings. Thus, a scheme is Noetherian if and only if it is locally Noetherian and compact. As with Noetherian rings, the concept is named after Emmy Noether. It can be shown that, in a locally Noetherian scheme, if \operatorname A is an open affine subset, then ''A'' is a Noetherian ring; in particular, \operatorname A is a Noetherian scheme if and only if ''A'' is a Noetherian ring. For a locally Noetherian scheme ''X,'' the local rings \mathcal_ are also Noetherian rings. A Noetherian scheme is a Noetherian topological space. But the converse is false in general; consider, for example, the spectrum of a non-Noetherian valuation ring. The definitions extend to formal schemes. Properties and Noetherian hypotheses Having ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Rewriting System
In mathematical logic and theoretical computer science, an abstract rewriting system (also (abstract) reduction system or abstract rewrite system; abbreviated ARS) is a formalism that captures the quintessential notion and properties of rewriting systems. In its simplest form, an ARS is simply a set (of "objects") together with a binary relation, traditionally denoted with \rightarrow; this definition can be further refined if we index (label) subsets of the binary relation. Despite its simplicity, an ARS is sufficient to describe important properties of rewriting systems like normal forms, termination, and various notions of confluence. Historically, there have been several formalizations of rewriting in an abstract setting, each with its idiosyncrasies. This is due in part to the fact that some notions are equivalent, see below in this article. The formalization that is most commonly encountered in monographs and textbooks, and which is generally followed here, is due to Géra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Induction
In mathematics, a binary relation is called well-founded (or wellfounded or foundational) on a set or, more generally, a class if every non-empty subset has a minimal element with respect to ; that is, there exists an such that, for every , one does not have . In other words, a relation is well-founded if: (\forall S \subseteq X)\; \neq \varnothing \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m) Some authors include an extra condition that is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence of elements of such that for every natural number . In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order. In set theory, a set is called a well-fou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is Closure (mathematics), closed under the limit of a sequence, limit operation. This should not be confused with closed manifold. Sets that are both open and closed and are called clopen sets. Definition Given a topological space (X, \tau), the following statements are equivalent: # a set A \subseteq X is in X. # A^c = X \setminus A is an open subset of (X, \tau); that is, A^ \in \tau. # A is equal to its Closure (topology), closure in X. # A contains all of its limit points. # A contains all of its Boundary (topology), boundary points. An alternative characterization (mathematics), characterization of closed sets is available via sequences and Net (mathematics), net ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Topological Space
In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong compactness condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that ''every'' subset is compact. Definition A topological space X is called Noetherian if it satisfies the descending chain condition for closed subsets: for any sequence : Y_1 \supseteq Y_2 \supseteq \cdots of closed subsets Y_i of X, there is an integer m such that Y_m=Y_=\cdots. Properties * A topological space X is Noetherian if and only if every subspace of X is compact (i.e., X is hereditarily compact), and if and only if every open subset of X is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Relation
In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs (x, y), where x is an element of X and y is an element of Y. It encodes the common concept of relation: an element x is ''related'' to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime p is related to each integer z that is a Divisibility, multiple of p, but not to an integer that is not a Multiple (mathematics), multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as -4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13. Binary relations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |