Nadel Vanishing Theorem
In mathematics, the Nadel vanishing theorem is a global vanishing theorem for multiplier ideals, introduced by A. M. Nadel in 1989. It generalizes the Kodaira vanishing theorem using singular metrics with (strictly) positive curvature, and also it can be seen as an analytical analogue of the Kawamata–Viehweg vanishing theorem. Statement The theorem can be stated as follows. Let X be a smooth complex projective variety, D an effective \mathbb-divisor and L a line bundle on X, and \mathcal(D) is a multiplier ideal sheaves. Assume that L - D is big and nef. Then H^ \left(X, \mathcal_(K_X + L) \otimes \mathcal(D) \right) = 0 \;\; \text \;\; i > 0. Nadel vanishing theorem in the analytic setting: Let (X, \omega) be a Kähler manifold (X be a reduced complex space (complex analytic variety) with a Kähler metric) such that weakly pseudoconvex, and let F be a holomorphic line bundle over X equipped with a singular hermitian metric of weight \varphi. Assume that \sqrt \cdot \theta(F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vanishing Theorem
{{Mathematical disambiguation ...
In algebraic geometry, a vanishing theorem gives conditions for coherent cohomology groups to vanish. * Andreotti–Grauert vanishing theorem * Bogomolov–Sommese vanishing theorem * Grauert–Riemenschneider vanishing theorem * Kawamata–Viehweg vanishing theorem * Kodaira vanishing theorem * Le Potier's vanishing theorem * Mumford vanishing theorem * Nakano vanishing theorem * Ramanujam vanishing theorem * Serre's vanishing theorem In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the exi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Analytic Variety
In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety Complex analytic variety (or just variety) is sometimes required to be irreducible and (or) reduced or complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic varieties are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions. Definition Denote the constant sheaf on a topological space with value \mathbb by \underline. A \mathbb-space is a locally ringed space (X, \mathcal_X), whose structure sheaf is an algebra over \underline. Choose an open subset U of some complex affine space \mathbb^n, and fix finitely many holomorphic functions f_1,\dots,f_k in U. Let X=V(f_1,\dots,f_k) be the common vanishing locus of these holomorphic functions, that is, X=\. Define a sheaf of rings o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in: * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The National Academy Of Sciences
''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of Sciences, published since 1915, and publishes original research, scientific reviews, commentaries, and letters. According to ''Journal Citation Reports'', the journal has a 2021 impact factor of 12.779. ''PNAS'' is the second most cited scientific journal, with more than 1.9 million cumulative citations from 2008 to 2018. In the mass media, ''PNAS'' has been described variously as "prestigious", "sedate", "renowned" and "high impact". ''PNAS'' is a delayed open access journal, with an embargo period of six months that can be bypassed for an author fee ( hybrid open access). Since September 2017, open access articles are published under a Creative Commons license. Since January 2019, ''PNAS'' has been online-only, although print issues are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plurisubharmonic Function
In mathematics, plurisubharmonic functions (sometimes abbreviated as psh, plsh, or plush functions) form an important class of function (mathematics), functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions (which are defined on a Riemannian manifold) plurisubharmonic functions can be defined in full generality on complex analytic spaces. Formal definition A function (mathematics), function :f \colon G \to \cup\, with ''domain'' G \subset ^n is called plurisubharmonic if it is semi-continuous function, upper semi-continuous, and for every complex number, complex line :\\subset ^n with a, b \in ^n the function z \mapsto f(a + bz) is a subharmonic function on the set :\. In ''full generality'', the notion can be defined on an arbitrary complex manifold or even a Complex analytic space, complex analytic space X as follows. An semi-continuity, upper semi-continuous func ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermitian Metric
In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure ( U(n) structure) on the manifold. By dropping this condition, we get an almost Hermitian manifold. On any almost Hermitian manifold, we can introduce a fundamental 2-form (or cosymplectic structure) that depends only on the chosen metric and the almost complex structure. This form is always non-degenerate. With the extra integrability condition that it is closed (i.e., it is a symplectic form), we get an almost Kähler structure. If both the al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Holomorphic Line Bundle
In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold such that the total space is a complex manifold and the projection map is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety ''X'' (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.e., locally free sheaves of finite rank) on ''X''. Definition through trivialization Specifically, one requires that the trivialization maps :\phi_U : \pi^(U) \to U \times \mathbf^k are biholomorphic maps. This is equivalent to requiring that the transition functions :t_ : U\cap V \to \mathrm_k(\mathbf) are holomorphic maps. The holomorphic structure on the tangent bundle of a complex manifold is guara ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudoconvex
In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the ''n''-dimensional complex space C''n''. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy. Let :G\subset ^n be a domain, that is, an open connected subset. One says that G is ''pseudoconvex'' (or '' Hartogs pseudoconvex'') if there exists a continuous plurisubharmonic function \varphi on G such that the set :\ is a relatively compact subset of G for all real numbers x. In other words, a domain is pseudoconvex if G has a continuous plurisubharmonic exhaustion function. Every (geometrically) convex set is pseudoconvex. However, there are pseudoconvex domains which are not geometrically convex. When G has a C^2 (twice continuously differentiable) boundary, this notion is the same as Levi pseudoconvexity, which is easier to work with. More specifically, with a C^2 boundary, it can be shown ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplier Ideal
In commutative algebra, the multiplier ideal associated to a sheaf of ideals Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ... over a complex variety and a real number ''c'' consists (locally) of the functions ''h'' such that : \frac is locally integrable, where the ''f''''i'' are a finite set of local generators of the ideal. Multiplier ideals were independently introduced by (who worked with sheaves over complex manifolds rather than ideals) and , who called them adjoint ideals. Multiplier ideals are discussed in the survey articles , , and . Algebraic geometry In algebraic geometry, the multiplier ideal of an effective \mathbb- divisor measures singularities coming from the fractional parts of ''D''. Multiplier ideals are often applied in tandem with vanishing theorems ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nef Line Bundle
In algebraic geometry, a line bundle on a projective variety is nef if it has nonnegative degree on every curve in the variety. The classes of nef line bundles are described by a convex cone, and the possible contractions of the variety correspond to certain faces of the nef cone. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of a nef divisor. Definition More generally, a line bundle ''L'' on a proper scheme ''X'' over a field ''k'' is said to be nef if it has nonnegative degree on every (closed irreducible) curve in ''X''. (The degree of a line bundle ''L'' on a proper curve ''C'' over ''k'' is the degree of the divisor (''s'') of any nonzero rational section ''s'' of ''L''.) A line bundle may also be called an invertible sheaf. The term "nef" was introduced by Miles Reid as a replacement for the older terms "arithmetically effective" and "numerically effective", as well as for the p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Big Line Bundle
In algebraic geometry, the Iitaka dimension of a line bundle ''L'' on an algebraic variety ''X'' is the dimension of the image of the rational map to projective space determined by ''L''. This is 1 less than the dimension of the section ring of ''L'' :R(X, L) = \bigoplus_^\infty H^0(X, L^). The Iitaka dimension of ''L'' is always less than or equal to the dimension of ''X''. If ''L'' is not effective, then its Iitaka dimension is usually defined to be -\infty or simply said to be negative (some early references define it to be −1). The Iitaka dimension of ''L'' is sometimes called L-dimension, while the dimension of a divisor D is called D-dimension. The Iitaka dimension was introduced by . Big line bundles A line bundle is big if it is of maximal Iitaka dimension, that is, if its Iitaka dimension is equal to the dimension of the underlying variety. Bigness is a birational invariant: If is a birational morphism of varieties, and if ''L'' is a big line bundle on ''X'', the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |