HOME
*



picture info

Murray Gell-Mann
Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American physicist who received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. He was the Robert Andrews Millikan Professor of Theoretical Physics Emeritus at the California Institute of Technology, a distinguished fellow and one of the co-founders of the Santa Fe Institute, a professor of physics at the University of New Mexico, and the Presidential Professor of Physics and Medicine at the University of Southern California. Gell-Mann spent several periods at CERN, a nuclear research facility in Switzerland, among others as a John Simon Guggenheim Memorial Foundation fellow in 1972. Early life and education Gell-Mann was born in Lower Manhattan to a family of Jewish immigrants from the Austro-Hungarian Empire, specifically from Czernowitz in present-day Ukraine. His parents were Pauline (née Reichstein) and Arthur Isidore Gell-Mann, who taught English as a second langu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manhattan
Manhattan (), known regionally as the City, is the most densely populated and geographically smallest of the five boroughs of New York City. The borough is also coextensive with New York County, one of the original counties of the U.S. state of New York. Located near the southern tip of New York State, Manhattan is based in the Eastern Time Zone and constitutes both the geographical and demographic center of the Northeast megalopolis and the urban core of the New York metropolitan area, the largest metropolitan area in the world by urban landmass. Over 58 million people live within 250 miles of Manhattan, which serves as New York City’s economic and administrative center, cultural identifier, and the city’s historical birthplace. Manhattan has been described as the cultural, financial, media, and entertainment capital of the world, is considered a safe haven for global real estate investors, and hosts the United Nations headquarters. New York City is the headquarters of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rod Crewther
Rodney James Crewther (23 September 1945 – 17 December 2020) was a physicist, notable in the field of gauge field theories. Education After gaining his MSc at Melbourne University, Crewther was awarded a Fulbright scholarship to the California Institute of Technology. He studied under the tutelage of Nobel prizewinner Murray Gell-Mann and completed his doctorate, in 1971, after successfully defending his dissertation against the renowned theorist Richard Feynman. His thesis was entitled ''Spontaneous Breakdown of Conformal and Chiral Invariance.'' Career After his PhD, he held postdoctoral appointments at Cornell University in Ithaca, New York and the Fermi National Accelerator Laboratory in Batavia, Illinois. Subsequently, he spent twelve years in Europe, six of them as a Staff Member of the European Laboratory for Particle Physics (CERN) in Geneva, and the remainder as a research associate at the University of Berne, University of Dortmund, and at the Max Planck Institut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gell-Mann–Nishijima Formula
The Gell-Mann–Nishijima formula (sometimes known as the NNG formula) relates the baryon number ''B'', the strangeness ''S'', the isospin ''I3'' of quarks and hadrons to the electric charge ''Q''. It was originally given by Kazuhiko Nishijima and Tadao Nakano in 1953, and led to the proposal of strangeness as a concept, which Nishijima originally called "eta-charge" after the eta meson. Murray Gell-Mann proposed the formula independently in 1956. The modern version of the formula relates all flavour quantum numbers (isospin up and down, strangeness, charm, bottomness, and topness) with the baryon number and the electric charge. Formula The original form of the Gell-Mann–Nishijima formula is: :Q = I_3 + \frac (B+S)\ This equation was originally based on empirical experiments. It is now understood as a result of the quark model. In particular, the electric charge ''Q'' of a quark or hadron particle is related to its isospin ''I3'' and its hypercharge ''Y'' via the relation: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Renormalization Group
In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle. A change in scale is called a scale transformation. The renormalization group is intimately related to ''scale invariance'' and ''conformal invariance'', symmetries in which a system appears the same at all scales (so-called self-similarity). As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so-called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smaller s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gell-Mann Matrices
The Gell-Mann matrices, developed by Murray Gell-Mann, are a set of eight linearly independent 3×3 traceless Hermitian matrices used in the study of the strong interaction in particle physics. They span the Lie algebra of the SU(3) group in the defining representation. Matrices : Properties These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation (so they can generate unitary matrix group elements of SU(3) through exponentiation). These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark model. Gell-Mann's generalization further extends to general SU(''n''). For their connection to the standard basis of Lie algebras, see the Weyl–Cartan basis. Trace orthonormality In mathematics, orthonormality typically implies a norm which has a value of unity (1). Gell-Mann matrices, however, are normalized to a value of 2. Thus, the tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gell-Mann And Low Theorem
The Gell-Mann and Low theorem is a theorem in quantum field theory that allows one to relate the ground (or vacuum) state of an interacting system to the ground state of the corresponding non-interacting theory. It was proved in 1951 by Murray Gell-Mann and Francis E. Low. The theorem is useful because, among other things, by relating the ground state of the interacting theory to its non-interacting ground state, it allows one to express Green's functions (which are defined as expectation values of Heisenberg-picture fields in the interacting vacuum) as expectation values of interaction picture fields in the non-interacting vacuum. While typically applied to the ground state, the Gell-Mann and Low theorem applies to any eigenstate of the Hamiltonian. Its proof relies on the concept of starting with a non-interacting Hamiltonian and adiabatically switching on the interactions. History The theorem was proved first by Gell-Mann and Low in 1951, making use of the Dyson series. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Neutral Particle Oscillation
In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais. For example, a neutron cannot transmute into an antineutron as that would violate the conservation of baryon number. But in those hypothetical extensions of the Standard Model which include interactions that do not strictly conserve baryon number, neutron–antineutron oscillations are predicted to occur. Such oscillations can be classified into two types: * Particle–antiparticle oscillation (for example, oscillation). * Flavor oscillation (for example, oscillation). In those cases where the particles decay to some final product, then the system is not purely oscillatory, and an interference between oscillation and decay ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, antiquarks, and antileptons, which generally are matter particles and antimatter particles), as well as the fundamental bosons ( gauge bosons and the Higgs boson), which generally are force particles that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle. Ordinary matter is composed of atoms, once presumed to be elementary particles – ''atomos'' meaning "unable to be cut" in Greek – although the atom's existence remained controversial until about 1905, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy. Subatomic constituents of the atom were first identified in the early 1930s; the electron and the pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called ''color''. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years. QCD exhibits three salient properties: * Color confinement. Due to the force between two color charges remaining constant as they are separated, the energy grows until a quark–antiquark pair is spontaneously produced, turning the initial hadron into a pair of hadrons instead of isolating a color charge. Althou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark Model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date. The model was independently proposed by physicists Murray Gell-Mann, who dubbed them "quarks" in a concise paper, and George Zweig, who suggested "aces" in a longer manuscript. André Petermann also touched upon the central ideas from 1963 to 1965, without as much quantitative substantiation. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interactions, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as '' color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]